
JIGSAW

VIEW: W H Y C E N T R A L M A T T E R S P. 10 2.42.4

volume 2 issue 4 www.mxdj.com

a
p

ril
2

0
0

4
2

4

THE LEADING MAGAZINETHE LEADING MAGAZINE
FOR MACROMEDIA MX FOR MACROMEDIA MX
DEVELOPERS & DESIGNERSDEVELOPERS & DESIGNERS

4 • 2004 MXDJ.COM • 3

14

4 • MXDJ.COM 4 • 2004

It’s All in the
Object

Reusable power is
always a plus

by charles e. brown

CSS
Finding your feet

by dave mcfarland

Flash Meets Authorware
Tricks for developers, from

basic to complex
by derek stottlemyer

Are You a Jigsaw
Aficionado?

Put it together and then
make it move

by joyce evans

20 32

7
Many Uses for New

Macromedia
RoboDemo

Enhancing the user
experience

by jake sibley

10
Why Central

Matters
It’s not just about the

browser anymore
by jesse r. warden

april 2004

on the cover

ou're a jigsaw puzzle fanatic and want to cre-

ate and share your own work. With Fireworks,

you can create a puzzle with as little as two

shapes, then set it dancing with Dreamweaver.

y
30

66 Integration
New Media’s

Impressario Xtra
for Director
New use for an

old friend
reviewed by alec east

4 • 2004 MXDJ.COM • 5

48 Freaks and
Geeks Unite
Getting dynamic

requires designers and
coders to work

together
by tom green

Bulletproof Printing
No one knows your job as

well as you do
by ron rockwell

FlashFusion
Integrating Flash MX 2004 and

ColdFusion MX 6.1 with
Web services

by curtis p. hermann

MOA City
It’s all in the architecture

by tab julius

685440

52 xile
Cartoon
by louis f. cuffari 74

vanguard
Line Art
by ron rockwell

6 • MXDJ.COM 4 • 2004

MXDJ.COM • 7

ast December, Macromedia

acquired eHelp Corporation, a San

Diego–based software company

offering an impressive set of tools

that complements Macromedia

products in very powerful ways. For MX

developers, one of the most exciting

additions is RoboDemo, an innovative

tool with a surprising variety of uses.

Simply put, RoboDemo lets you easily

create interactive demonstrations and

software simulations in the Macromedia

Flash format. You can use RoboDemo to

record a series of actions on your com-

puter screen as a compact Flash movie

(SWF), then easily publish the movie

online or send it in an e-mail.

As you can imagine, being able to

quickly save and share anything you do

on your screen creates tremendous

potential for improving communication

with both your customers and col-

leagues. With RoboDemo, you can

demonstrate an on-screen activity to

anyone, regardless of whether it is a cus-

tomer visiting your Web site or a col-

league down the hall.

RoboDemo is a powerful tool for

enhancing user experiences you’re

already creating with Dreamweaver MX

2004, Flash MX 2004, and other

Macromedia MX products.

If you’re an MX developer working with

marketing or sales to showcase your compa-

ny’s software or Web site, RoboDemo can be

a powerful vehicle for conveying your prod-

uct message. By recording a simulation of

your software or Web site, you can express

its value to potential customers quickly and

effectively. It’s always easier to show a prod-

uct than to explain it, and since RoboDemo

supports interactivity, you can even create a

simulation that actively engages your

potential customers. There is no better way

to help your customers “get it.”

E-learning developers already using

Macromedia Flash, Dreamweaver, Breeze,

Authorware, or any combination of these

products will welcome RoboDemo as a

powerful addition to their toolboxes.

RoboDemo simulations can include

sophisticated interactivity, such as click

boxes, buttons, text-entry boxes, and

multiple-choice quizzes. RoboDemo

includes branching and scoring capabili-

ties that developers can use within

stand-alone RoboDemo simulations or

integrate into a larger e-learning course.

Since RoboDemo simulations are

SCORM 1.2–certified and AICC-compliant,

e-learning developers can effortlessly

integrate their RoboDemo projects into

Learning Management Systems (LMS),

Macromedia Authorware, or other e-

learning applications.

Regardless of the type of application you

create, your users can benefit from a brief,

animated tutorial that introduces them to

your application and helps them get start-

ed. Use RoboDemo to create a tutorial

that calls their attention to the

major features of your application

and simulates common tasks.

If your application is

fairly sophisticated, you

can use RoboHelp,

RoboDemo’s sister soft-

ware, to create a com-

prehensive Help system

that explains your appli-

cation’s features in com-

plete detail. You can fur-

ther enhance your Help

system with individual

RoboDemo tutorials.

Developers who provide

technical support can use

RoboDemo to create a knowledge

base of tutorials for common topics or

FAQs. Instead of having to read and follow

difficult instructions, users simply view your

demonstration and complete the task in

question. And since the tutorials are com-

pact SWF files, you can easily e-mail or pub-

lish them online to answer questions

before an issue escalates to phone support.

Internal Uses
By communicating visually instead of

wasting time explaining things in words

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editors
Nancy Valentine, 201 802-3044
nancy@sys-con.com
Jean Cassidy, 201 802-3041
jean@sys-con.com
Jennifer Van Winckel, 201 802-3052
jennifer@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

Newsstand Distribution Consultant
Gregory Associates/W.R.D.S
732 607 9941 BJGAssociates@cs.com

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristen Kuhnle, 201 802-3025
carrieg@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

in
n

o
va

tio
n

l
Enhancing the user experience

by jake sibley

Many Uses for New
Macromedia RoboDemo

8 • MXDJ.COM

or e-mail, RoboDemo helps you cut

through the confusion that hinders many

internal processes.

The less glamorous side of Flash devel-

opment is the repetitive work that can burn

up a lot of development time. Many devel-

opers wish they could skip the routine stuff

and focus on more-creative pursuits. You

can use RoboDemo as a companion to Flash

to automate many of these tedious tasks,

such as taking screen shots, creating mouse

tweens, and animating text captions. With

the RoboDemo FLA Module (sold separate-

ly), you can import your RoboDemo simula-

tion into Flash and save it as an editable

Flash file (FLA) that you can further enhance

or integrate into a larger project.

Fixing bugs is a common task among

developers and QA personnel, but these

groups often waste time just trying to

describe or replicate the bugs before

they can fix them. Inaccuracies and mis-

understandings throughout the process

inevitably lead to unnecessary delays and

frustration. With RoboDemo, you can

capture bug behavior instantly, accurate-

ly, and permanently. Once a bug is dis-

covered, you simply start recording and

repeat your actions to recreate it.

RoboDemo saves the steps you took and

the resulting error in a Flash movie that

you can easily e-mail from within

RoboDemo to appropriate colleagues.

We all know it’s important for devel-

opers to understand the “big picture” of

their applications, but who has time to

learn? Hiring a new developer to help

you reach your deadline can exacerbate

this problem. How do you get the new

guy up to speed on the app so he can

get to work as soon as possible?

The answer is RoboDemo. Create a sim-

ple movie of your application that demon-

strates the basic features, functionality, and

purpose. You can make the movie in minutes,

it only takes minutes to watch, and it will

show your teammate how his or her work will

integrate into the overall application.

It’s a classic catch-22: you don’t want to

spend time building a feature that you

won’t include in an application, but you

can’t share your idea without spending the

time to build it. RoboDemo breaks this cycle

because you can use it to quickly mock up a

feature. You can record the existing applica-

tion interface and easily overlay small

images in a series of frames to quickly simu-

late your idea – without coding a single line.

As you learn more about RoboDemo,

imagine how you can apply it in your

own work. Many customers have already

let us know their innovative uses for this

tool – uses they hadn’t even

anticipated. These comments

are inspiring development on

the next RoboDemo version

release, so please continue to

share them with us in the

RoboDemo Community at

www.helpcommunity.ehelp.

com/robodemo. If you

haven’t tried RoboDemo yet,

visit www.macromedia.com

/software/robodemo and see

what it can do for you.

in
n

o
va

ti
o

n
SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Director, Sales & Marketing
Megan Mussa, 201 802-3023
megan@sys-con.com
Advertising Sales Managers
Alisa Catalano, 201 802-3024
alisa@sys-con.com
Carrie Gebert, 201 802-3026
carrieg@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3025
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Christopher Croce, 201 802-3054
chris@sys-con.com
Online Editor
Lin Goetz, 201 802-3045
lin@sys-con.com

ACCOUNTING
Accounts Receivable
Charlotte Lopez, 201 802-3062
charlotte@sys-con.com
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
Conference Manager
Lin Goetz, 201 802-3045
lin@sys-con.com
National Sales Manager
Sean Raman 201-802-3069
raman@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com

JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

Jake Sibley is a pro-

fessional writer with

experience in techni-

cal communications

and marketing. As a

communications spe-

cialist at Macromedia,

Jake uses RoboHelp

and RoboDemo on a

regular basis. jsibley@

macromedia.com

4 • 2004 MXDJ.COM • 9

MXDJ
Section Editors

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with

clarity, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse

warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity

is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,

now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various

Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension

developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including medi-

ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been

involved in several motion picture projects in the

facility of directing, screenwriting, and art direc-

tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both

Web and print media. He is deputy art director

for SYS-CON Media and the designer

of MX Developer’s Journal.

Ron Rockwell
Illustrator, designer, author, and Team

Macromedia member, Ron Rockwell lives and

works with his wife, Yvonne, in the Pocono

Mountains of Pennsylvania. Ron is MXDJ’s

FreeHand editor and the author of FreeHand 10

f/x & Design, and coauthor of Studio MX Bible

and the Digital Photography Bible. He has Web

sites at www.nidus-corp.com and

www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for

SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was

named one of the "Top thirty magazine industry

executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS

degree in information management and technol-

ogy from the School of Information Studies at

Syracuse University. www.robertdiamond.com

10 • MXDJ.COM 4 • 2004

entral is important to develop-

ers for a number of reasons.

First, Central provides an appli-

cation framework with which you can sell

the applications you make. You just have

to add a few purchasing details to an

XML file and edit a Web form.

Additionally, the user is presented with

information about how to purchase.

Considering Macromedia’s current deals

with companies such as Intel and AOL,

you can be sure that your applications

will get exposure.

The evolving Flash Player will do bet-

ter on the desktop than within the

browser. There are fewer restrictions and

a lot more room to add features and

internal APIs developers may want or

need. The politics of ubiquity rule the

overarching plan of the Flash Player’s

development in a Web environment; you

don’t have those restrictions with Central.

Central makes deployment scenarios

much easier. With Central’s built-in App

Finder and Free Finder applications, users

are more likely to find your applications.

Additionally, you know exactly what

technology your end user has; currently

Flash Player 6.0.65.0. There are no diver-

sions from these specs, the only differ-

ence is OS. It’s nice to have such assur-

ances in development, as any developer

knows.

But to really understand what Central

means to us, we have to look at the histo-

ry of where Central came from, including

the problems Flash application develop-

ers have had in the past, as well as where

we’re going.

For an application developer, the

browser is pretty lame. If you look at the

history, starting with when the Web hit, a

lot of application developers turned into

Web application developers. Whether it

was for back-end ASP/PHP/JSP coding,

Java applications (and all the flavors), or

copious amounts of JavaScript/DHTML,

application programmers had a new

playing field with many avenues to

explore and a lot of uncharted territory.

In the multimedia realm, the CD-ROM

revolution made us aware of what was

truly possible using all of the media disci-

plines (design, audio, video, program-

ming) together to create unique and

powerful interactive media. The push for

the Web wasn’t as easy, mainly because

of bandwidth.

Even so, there was still a lot of interac-

tive, offline work that application devel-

opers could do utilizing a lot of artistic

media. Whether the range was a simple,

interactive brochure for a kiosk, or a full-

blown interactive application that may

even have had Internet connectivity,

Director was one of the few authoring

programs that allowed you to merge the

best that media could offer. However, as

companies desired easier exposure to

their customers (but with all the func-

tionality) the plug-in wars got pretty

harsh. Basic rights were violated, and IT

tightened the noose of security – and for

good reason. This made a lot of technolo-

gies inaccessible to a lot of people.

Enter Flash – this plug-in is every-

where. It is a cross-platform, lightweight

media tool with which many people can

view and experience whatever the cre-

ators make. You can create animations as

well as applications on the same plug-in.

Although Director has a great plug-in,

even as a developer, I’ve had a lot of trou-

ble getting it to work on anything even

remotely associated with a firewall. Call it

user error, but I haven’t been able to get

it to work easily – who’s at fault doesn’t

matter. Flash, on the other hand, is very

easy to install, and in many cases is

already installed. This ease of prolifera-

tion has enabled a vast amount of the

connected world to view Flash content.

Flash has been capable of connecting

to outside data sources via GET/POST

operations since Flash 4 and via XML and

XMLSocket since Flash 5. With Flash 6

came Flash Remoting as well as the Flash

Communication Server, built-in Central

installation functionality, Web service

code modules packaged with Flash MX

2004, and dynamic sound and video, all

with the same real-time pixel-to-vector

view

Why Central Matters
It’s not just about the browser anymore

by jesse r. warden

c

4 • 2004 MXDJ.COM • 11

12 • MXDJ.COM 4 • 2004

engine that can scale your content, and all

running in a secure sandbox. From a multi-

media standpoint, whether for creating rich

media ads or Web applications, Flash is the

way to go.

But Flash can’t go much further in its cur-

rent environment. Considering all the factors

working against innovation in the IE browser

market, Microsoft’s attitudes toward browsers

and browser applications in general, and the

challenges of integrating with a new barrage

of browsers, the Flash Player has many chal-

lenges to overcome. Challenges like allowing

Flash to easily respond to “next” and “back”

navigation, in all versions of IE that are realis-

tic (and who determines this?), as well as

Mozilla and friends, and the *nix flavors.

It’s really about attitudes. Microsoft

dropped development of IE for many rea-

sons, but look where they’re headed. Their

prominent emphasis in Longhorn, and its

development platform Avalon, is to create

Web-connected applications that can be

occasionally connected. This applies to lap-

tops and devices such as PDAs and phones.

There was a time when the push for win32

and Web applications as two product offer-

ings was key to success and survival in tech-

nology. Studies show that a large portion

(80% in some cases, but I never trust statis-

tics) of Internet users utilize that connection

without a browser. Applications that are con-

nected have a lot more freedom outside the

browser, not just in functionality, but in room

to grow and adapt. Microsoft’s enhancing

their OS and allowing applications to access

that rich GUI, as well as the classes they used

to create it, opens a lot of doors for develop-

ers wishing to get into the rich GUI market.

Flash, as its current IDE stands, is somewhat

challenging to existing developers. The flair

that Flash can offer, as well as its integration

into disparate systems, makes it ideal for put-

ting a nice face on applications – the issue

lies in getting comfortable. The advent of

Flex from Macromedia will definitely open

the doors for enterprise application develop-

ers. Interestingly, I’ve read reports that a lot

of smaller-time application developers feel

they too would like the workflow of Flex.

From how the initial offerings work, the

Microsoft XML format and Macromedia’s

looked exactly the same in my eyes; one sim-

ply used ActionScript where code needed to

be written, while the other used C#. Even the

syntaxes were amazingly similar.

Macromedia, too, realizes that if they

want to offer more benefits to developers,

they cannot unnecessarily bloat the Flash

Player with features comparable to

Microsoft’s current Smart Client. From a

developer standpoint, one of the great suc-

cesses of the Flash Player was its proliferation

to a lot of platforms and devices because of

its small file size and lightweight implemen-

tation. Additionally, it’s getting harder and

harder to support each and every browser

intricacy and still have the player operate and

function the same on each platform without

spending unrealistic development time or

unnecessarily bloating the Flash Player to

deal with these various discrepancies.

This is where Central comes in. The OS is

our playing field now, instead of the browser.

And by being freed of the chains of function-

ality and file-size restraints while retaining a

secure sandbox, it has room to grow where

we want it to. In contrast, because of the

mess created on the Web by the lack of stan-

dards and the lack of applications following

those standards, people have learned and

have started following standards, which

doesn’t leave a lot of growing room. Going

against the grain to push the envelope of

design and media is now Okay only if you val-

idate – lame.

My subjectivity is born of the fact that,

during college, I chose the Director applica-

tion route over Web design, merely because

there weren’t a lot of rules I had to follow. As

long as we didn’t crash your computer, the

playing field for the team of designers I

worked with was wide open. This allowed for

a great number of custom-built solutions and

great flexibility and creativity. Flash initially

offered this on the Web, but as more func-

tionality is needed from a programming

standpoint, it’s hard to deliver much without

stepping on some file-size or nonubiquitous

toes. The Flash Player on the Web has

reached its breaking point in terms of what

we can add without significant tradeoffs.

Flash, already maturing into a really great

development platform, saw the rise of some

third-party applications to extend Flash

where it was lacking in the desktop environ-

ment. Screenweaver, SWF Studio, etc., all

offer ways to easily give Flash functionality

that the player was lacking, such as reading

the local hard drive and saving a text file, as

well as additional APIs, some custom created

by developers. As most of my work was in the

application arena as opposed to Web, these

programs were, and still are, invaluable.

This isn’t saying Web applications are bad

or are going away. Rich GUI applications that

people can use from anywhere with a Web

browser and an Internet connection is a

powerful concept. However, for people like

me, who don’t like dealing with browsers

and all the fun little problems that Web

developers and designers deal with day in

and day out, a set platform is required. If

you’re a .NET developer, you get the .NET

Framework; they also have one for devices.

This is extremely cool for .NET developers,

but what do Flash developers get? Originally,

the same player with minor security restric-

tions freed. If you wanted functionality simi-

lar to what desktop apps had, you had to use

a third-party application or Director. Now,

we have Central. Just like some .NET apps, it

has one-click installation. It also has built-in

UI controls and a plethora of built-in APIs

not offered in the Flash Web Player.

It’s important to focus on where we’re

going, not where we are. Central, in its initial

incarnation, is strictly for developers to get

comfortable developing in it, as well as to pro-

vide Macromedia with the feedback it needs

to better morph Central in a direction that is

somewhat congruent with our Flash applica-

tion development needs. We Flash developers

now have a platform that has more potential

for growth and the ability to adapt to our

needs more easily and quickly. Not only that,

but users can be upgraded more easily along

with the applications that we deploy to them.

Think of Flash with hardware acceleration and

easier access to OS-integrated features. These

are all possibilities depending on community

need.

The really good stuff is yet to come. Once

Macromedia starts marketing Central to the

user base, packages it to places of great

exposure (crossing fingers), and implements

the AOL IM API (as well as related packages

such as ICQ) along with some of the Breeze

Live APIs for pods, Central will be a seductive

platform to not only develop to, but also to

sell applications on.

Jesse R. Warden, MXDJ’s Flash editor, is a

senior Flash developer at Surgical

Information Systems, an operating room

software company, where he currently uses

Flash MX, Flash Remoting, .NET, and

Oracle to create next-generation rich

Internet applications for the OR. He con-

tributed four chapters to the Flash

Communication Server MX Bible and has

written articles for various publications,

including one for Macromedia for a DRK.

jessewarden@sys-con.com

vi
e

w

4 • 2004 MXDJ.COM • 13

Win
a year
of free free

hosting*
*On Shared Hosting or the equivalent value
See http://edgewebhosting.net/cfdj for details

By the Numbers:

• 2 Rings or less, live support

• 100% Guarantee

• 99.998% Uptime

• 150 MBPS Fiber Connectivity

• 24 x 7 Emergency support

• 24 Hour free backup

When calling your web host for support you want answers, not an
annoying song stuck in your head from spending all day on hold. At
EdgeWebHosting.net, we'll answer your call in two rings or less. There's
no annoying on-hold music, no recorded messages or confusing menu
merry-go-rounds. And when you call, one of our qualified experts will have
the answers you're looking for. Not that you'll need to call us often since
our self-healing servers virtually eliminate the potential for problems and
automatically resolve most CF, IIS and ASP problems in 60 seconds or less
with no human interaction. Plus, our multi-user support system allows you
to track support requests for each of your engineers individually, lookup
server availability, receive a copy of all errors on your site in real time, and
even monitor intrusion attempts on your site in real time. For a new kind
of easy listening, talk to EdgeWebHosting.net

For answers call us at 1-866-EDGEWEB
3 3 4 3 9 3 2

www.edgewebhosting.net

What are you WAITING for?

Shared Hosting ¥ Managed Dedicated Servers ¥ Semi-Private Servers
ColdFusion ¥ SQL Server ¥ .NET ¥ Self-Healing Servers ¥ Value Priced

© 2003 Edge Web Hosting. All rights reserved. Edgewebhosting.net and Edge Web Hosting logos are trademarks of ACS Edgewebhosting.net. ColdFusion is a trademarke of Macromedia. ASP, SQL Server, .NET are registered trademarks of Microsoft Corp.

Unless you’ve been living
under a rock – at least a
rock without high-speed
Internet access – you’ve no
doubt heard of Cascading
Style Sheets, or CSS. Over
the next few months we ’ll
be featuring articles on
how to use Dreamw eaver
MX 200 4 and Cascading
Style Sheets to make your
sites look great and work
better. This month we’ll
cover the basics – to bring
novices up to speed and to
introduce these concepts
to other MX S tudio users
who ma y have been too
busy with ActionScript,
Lingo, or CFML over the
past few years to keep up
with this rapidly evolving
Web standard.

by dave mcfarland

14 • MXDJ.COM 4 • 2004

4 • 2004 MXDJ.COM • 15

16 • MXDJ.COM 4 • 2004

What Is CSS?
Cascading Style Sheets – CSS – pro-

vides formatting control over HTML. With

CSS, you can easily add borders to graph-

ics, apply sophisticated typographic con-

trol to text, and create streamlined lay-

outs without the use of tables. CSS is real-

ly a replacement for the anemic design

controls offered by HTML such as the

 and <table> tags and their associ-

ated properties. CSS lets HTML do what it

does best – logically structure documents

– while providing a rich formatting lan-

guage to create visually sophisticated

designs.

A stylesheet is a collection of styles –

called rules – that define the presentation

of elements on a page. For example, you

could create a style that would make all

<h1> tags appear in purple using the

Verdana font, and underlined with a

green dotted line. Or a style could add a

2-pixel red border to an image, and align

it to the right edge of the page. In fact,

each rule can contain many different for-

matting properties such as font size,

background color, border type, and posi-

tion.

CSS in
Dreamweaver MX 2004

Dreamweaver MX 2004 sports many

new CSS features, not the least of which

is its ability to render CSS-based designs

with far greater accuracy than the previ-

ous version of the program. CSS designs

looked like a garbled mess in

Dreamweaver MX’s Design view. In MX

2004, even complicated CSS designs

often look nearly identical to the display

of most standards-compliant browsers. In

addition to MX 2004’s display of CSS, how

you create, use, and edit styles has also

changed.

If you’re a former Dreamweaver MX

user, you’ll find CSS popping up in unex-

pected places. Some of the dialog boxes

you formerly used to add HTML-style for-

matting now use CSS. For example, as in

MX, MX 2004’s Page Properties dialog

box (Modify ‡ Page Properties) lets you

set the background color of the page.

However, instead of setting the <body>

tag’s bgcolor attribute as in earlier ver-

sions, MX 2004 creates a new CSS style

that defines the background color of the

page. The end result is the same – a col-

ored background – it’s just that MX 2004

uses CSS to specify these page proper-

ties.

The page properties dialog lets you

set a wide range of properties that have a

global effect on a page. In addition to the

properties available in MX – page mar-

gins, background color, background

image, and link colors – MX 2004 lets you

set a default font for a page and define a

rollover state for text links (see Image I).

You can even individually tweak the size

and color of the different heading tags

(<h1>, <h2> and so on).

The Property Inspector has also

undergone a major overhaul. By default,

if you select text on a page and then set

the text size, font face, and font color

using the Property Inspector

Dreamweaver creates a new CSS style

that is applied to the selected text. The

new style’s name appears in the Property

Inspector’s Style menu with an unimagi-

native name like style1, style2, style 3,

and so on.

TTiipp:: You can rename these style names

by selecting Rename… from the Property

Inspector’s Style menu (see Image II).

Depending on how you selected the

text, before you applied formatting with

the Property Inspector, one of two other

things happens:

• If you selected a blocklevel element

like a paragraph or heading,

Dreamweaver adds an HTML attribute

called “class” to the paragraph – this

property lets a Web browser know that

the style affects the entire block. For

example, you added a dark-blue color

to the first paragraph of text on a

page. Dreamweaver creates a new

style, say style1. The HTML would look

like this: <p class=”style1”>; all text in

the paragraph is dark blue; and the

style’s name appears in the Property

Inspector.

• If you selected just a portion of a para-

graph, say a few words, and then

applied some character formatting,

Dreamweaver behaves slightly differ-

ently. It still creates a new style, for

example, style2, and that style still

appears in the Property Inspector. But

it also injects an HTML tag called a

span. The span tag might look like this:

formatted text

here . This tag will wrap

around the text you selected, and the

style is applied only to the text inside

the span.

A good way to determine which

method Dreamweaver used is to look at

the tag selector at the bottom left of the

document window. If you see something

like <p.style4>, this means style4 is

applied to the paragraph. If you see

<span.style6>, Dreamweaver applied the

style to just a portion of the paragraph,

headline, or block-level element.

The cool thing about this technique is

that you don’t have to go through all of

these formatting steps to apply the same

look to other text on the page. Simply

select the text you want to format and

choose the name of the style you want to

use – for example, style1– from the Style

menu.

Removing formatting you applied this

“In MX 2004, even complicated
CSS designs often look nearly
identical to the display of most
standards-compliant brow sers”

4 • 2004 MXDJ.COM • 17

way is easy: click anywhere inside the for-

matted text and select None from the

Property Inspector’s Style menu. This

removes the CSS formatting from the

text.

However, if you decide to change the

style of text you formatted using the

Property Inspector some strange things

can happen. Let’s say you select a para-

graph and apply a red color; select Arial

or Helvetica, sans serif as the font; and

change its size to 36 pixels. Dreamweaver

creates a new style – style1. You decide

you don’t like the red color, so you imme-

diately change it to a deep orange.

Dreamweaver (as you’d expect) updates

style1 swith a deep orange color. In this

scenario, everything is OK.

But, let’s say you apply this style to

another headline on the text. Now there

are two headlines with the style1 style

applied to them. However, if you select

the second headline and change its color,

Dreamweaver doesn’t update style1.

Instead, Dreamweaver creates another

style containing just the new color and

applies it (along with the first style) to the

headline. To further confuse matters, the

Property Inspector’s Style menu displays

“none”, meaning no styles are applied to

the headline, when in reality there are

two styles – style1 and style2.

This may seem crazy, but it happens

because Dreamweaver doesn’t know

what you wanted. Did you intend to add

color to just that one headline or change

the color of the style. Either choice is pos-

sible – maybe you want this one headline

to look mostly like the other, but stand

out with a different color. Maybe not.

In any case, Dreamweaver’s behavior

may feel erratic and certainly won’t help

you edit the style. You have two choices if

you want to update the style. First, make

sure no other text on the page uses the

style. You can then change the color, font

face, and size using the Property

Inspector and Dreamweaver will update

the style. Once you’re done – really done

– then you can use that style freely on

the page. A better choice, if you wish to

edit the style itself, is to use

Dreamweaver’s CSS tools and not the

Property Inspector.

There’s another problem with using

the Property Inspector and Page

Properties dialog to format elements on

a page. Dreamweaver stores the CSS

style information in the <head> region of

the page. While this is fine for just one

Web page, it’s a problem if you want to

share styles among all the pages of your

site. A better option is an external

stylesheet. This is a separate file, with a

.css extension, that just contains CSS

rules. You can link any number of Web

pages to this file. In addition to provid-

ing download savings (the external .css

file is downloaded once and then cached

in the user’s computer), external style

sheets also ease site updating. If you

want to change how a certain style looks

throughout your site, you need to

change only a single file.

TTiipp:: If you do use the Property Inspector

or Page Properties dialog to add styles

to a page, you can always export those

styles into an external style sheet by File

> Export > CSS Styles.

Creating Styles in
Dreamweaver

Instead of relying on the Property

Inspector or Page Properties dialog to

create styles for your page, you’ll have

more control if you explicitly create your

styles using Dreamweaver’s CSS tools.

The fastest way to create a new style is to

right-click (Ctrl-click on Mac) on any

empty area of a document, and from the

contextual menu select CSS Styles > New

to open the New CSS Style dialog box

(see Image III).

TTiipp:: You can also access this dialog box

by choosing Text > CSS Styles > New or

clicking the New Style button on the

CSS Styles panel.

When you create a style you need to

pick a selector type, supply a selector

name, and tell Dreamweaver where to

store the style information. A selector dic-

tates what a browser applies the style to.

For example, you could create a style that

automatically formats all <h1> tags in

blue, or a style that you manually apply

to specific page elements – say you want

the first paragraph of a page to be in

slightly larger type than other paragraphs

on a page.

Dreamweaver classifies selectors into

three types: classes, tags, and advanced

selectors. A class is most like the Word-

processor notion of a style: you give the

style a name of your choosing, like

companyName, and apply the style man-

ually to text or other page elements.

Classes give you flexibility since you

specifically identify which elements you

want the style to apply to. For example,

maybe you want some paragraphs on a

page to look a particular way – create a

style and apply it to just those para-

graphs.

im
a

g
e

 I

im
a

g
e

 I
I

Note: The name of a class style always

begins with a period, like this:

.companyName. However, if you forget to

add the period when naming a class

style, Dreamweaver is thoughtful enough

to add it for you.

Tag styles, on the other hand, are

indiscriminate. They define how a partic-

ular tag will look anywhere it appears on

the page. For example, you could create a

tag style that would replace the default

bullet of every unordered list (the

tag) on a page with a GIF image you cre-

ated. Tag styles simplify formatting; you

don’t have to apply a tag style after it’s

created; the Web browser automatically

does that whenever it encounters the

specific tag.

Finally, what Dreamweaver calls

“advanced selectors” are really a grab bag

for all of the additional selector types CSS

supports – and there are a lot. These

include pseudo-classes (to let you format

the different states of a link, for example,

active, visited, hover), IDs (for identifying

unique page elements such as the head-

er, sidebar, or page footer), and descen-

dent selectors to name a few. In future

articles, we’ll cover advanced selectors in

greater depth.

After picking a selector type, you sup-

ply a name (for classes), tag (for tag

styles), or selector (following the syntax

of CSS selectors), and finally tell

Dreamweaver whether to store the style

information in the current page – “In this

document only” – or in an external style

sheet. You can create a new external style

sheet by selecting New Style Sheet from

the menu, or, add it to an already

attached style sheet. You’ll frequently cre-

ate a main external style sheet for your

site, where you store global styles that

affect all of the pages of your site. In

addition, you may create additional

external stylesheets for particular purpos-

es (like formatting forms) or particular

sections of your site that may have spe-

cial design needs.

Clicking OK in the New CSS Style dia-

log either opens a save dialog box (if

you’re creating a new external style

sheet) or the CSS Style Definition win-

dow. Here you have access to 67 different

CSS properties for controlling everything

from text properties – like font face, color,

and size – to defining pixel-precise posi-

tioning for page elements like banners

and sidebars. For a good listing of CSS

properties – what they are and how they

work – visit www.w3schools.com/css/css_

reference.asp.

Applying Styles
Depending on the type of style you

created you may not need to do anything

to apply your newly created style. For

example, tag styles are automatic; wher-

ever the tag appears its style is applied.

Class styles, on the other hand, must be

applied manually. If you’re a

Dreamweaver MX user, you probably use

the CSS Style panel to do this. In MX

2004, that same functionality is moved to

the Property Inspector. The Style menu

lists all of the classes available to a partic-

ular page.

You can apply class styles to any

selection in the document window,

whether it’s a word, an image, or an

entire paragraph. For example, suppose

your company’s name appears in a para-

graph of text on a Web page that

includes a class style named company. To

format that text using the class style,

select the name in the document window

and use the Property Inspector’s Style

menu to select the class name. Similarly,

to format larger selections, such as an

entire paragraph, you’d select the para-

graph and select the class’s name from

the Property Inspector style menu.

Note: If you choose a class name from

the Property Inspector when nothing is

selected (for example, when you click in

the middle of a paragraph),

Dreamweaver will apply the style to the

nearest enclosing tag.

When you apply a class style (.con-

tent, for example) to a tag, Dreamweaver

adds a special class property to the

page’s code, like this:

<p class="company">

On the other hand, if you apply a

class to a selection that isn’t a tag – a sin-

gle word that you’ve double-clicked, for

example – Dreamweaver wraps the selec-

tion within a tag like this:

The National

Exasperater

This tag, in other words, applies a style to

a span of text that can’t be identified by a

single tag.

Removing a class style is just as easy:

select the styled text, and choose None

from the Property Inspector’s Style menu.

Editing Styles
To change the properties of a style,

you can always return to the CSS Style

18 • MXDJ.COM 4 • 2004

im
a

g
e

 I
II

im
a

g
e

 I
V

4 • 2004 MXDJ.COM • 19

Definition window by selecting the style

in the CSS Styles Panel and clicking the

Edit Style Sheet button (the icon with the

pencil). However, MX 2004 introduces a

more streamlined approach to editing

styles: the Rule Inspector.

To use the Rule Inspector, first make

sure the Tag Inspector is open. Choose

Window > Tag Inspector or press the F9

key. Next, select the style you wish to edit

in the CSS Styles Panel – this turns the

Tag Inspector into the Rule Inspector (see

Image IV).

The Tag Inspector has two different

views: a category view, which groups the

different CSS properties into the same

seven categories used in the Style

Definition Window (the left image in

Image IV); and a list view, which provides

an alphabetical listing of all CSS proper-

ties (the right image in Image IV) .

So you can quickly determine proper-

ties already set for the particular style,

Dreamweaver moves previously defined

properties to the top of the list, highlight-

ing the property names in blue and list-

ing the property settings to the right. In

Image IV, for example, the copyright class

style is selected. In the Category view,

two font properties float to the top of the

Font category: font-size and color. In the

List view, you can see that the style actu-

ally has six different CSS properties set –

border-top-color to text-align. This is a

great way to quickly grasp what proper-

ties you’ve already defined for a style.

You set the value of a particular prop-

erty in the space to the right of the prop-

erty name. If that property already has a

value, you can change it or delete the

information there to essentially delete

that property from the style. Fortunately,

most of the time you don’t have to type

in the value: Dreamweaver provides the

ubiquitous color box for any property

that requires a color; properties that have

a limited list of possible values include a

pull-down menu of options; and, finally,

some properties require a path to a file

(such as when adding a background

image to a style). In this case,

Dreamweaver provides the familiar

“browse for file” folder icon.

Other properties require knowledge

of CSS and must be entered manually (in

the correct format, of course). That’s what

makes this a more advanced option for

experienced CSS gurus. Even not-so-

experienced users can find this window

helpful, however. First, it’s the best way to

get a bird’s eye view of a style’s proper-

ties. The list view is especially helpful in

this regard, since all of the defined prop-

erties are listed at the top of the window.

Second, for really basic editing such as

changing the colors used in a style, or

assigning a different font for a style, the

Rule Inspector is as fast as it gets.

More to Come
If you’re new to CSS, or still finding

your way, this brief introduction should

help you get your bearings in

Dreamweaver MX 2004. In our next arti-

cle, we’ll explore some of the behind-the-

scenes issues you should be aware of

when setting up your style sheets, such

as how to effectively use document type

definitions, what validation is really

about, and rules every style sheet should

contain.

Dave McFarland is the Dreamweaver edi-

tor of MX Developer’s Journal and the

author of Dreamweaver MX 2004: The

Missing Manual (O’Reilly/Pogue Press).

davemcfarland@sys-con.com

20 • MXDJ.COM 4 • 2004

by derek stottlemyer

In this article I show you some of the tricks I’ve learned over the years and give you some
ideas for how to better combine Flash and Authorware in your work. I start with the basics
and move to the more complex, and I cover some optimization techniques for speeding up
Flash playback. You can find sample FLA and AW files at www.sys-con.com/mx/sourcec.cfm.

4 • 2004 MXDJ.COM • 21

4 • 2004

XTRA or ActiveX
There are two ways to embed Flash

movies in Authorware, the Flash Asset

XTRA and the Flash ActiveX Control. The

XTRA is shipped with Authorware and

does not require anything on the user’s

computer, while ActiveX is part of the

Flash Player on Windows (see Table 1).

For XTRA, Authorware version 6.0

supports Flash 5, while Authorware 6.5

and 7.0 support Flash MX. Flash MX 2004

is not currently supported as an XTRA

and would require use of ActiveX.

Regarding ActiveX, nearly everyone

on Windows has a version of Flash

ActiveX, but it is not guaranteed. I per-

sonally use XTRA because it will work on

Macs and PCs, but many people use

ActiveX or both ActiveX and XTRA. The

samples in this article use XTRA.

A Few Notes on Code
A few quick notes if you aren’t used to

scripting in both ActionScript and

Authorware:

• In Authorware you set a variable with

“:=”: myVariable :=5

• In Authorware you check equality with

“=”:if myVariable=5 then…

• In Flash you set a variable with “=”:

myVariable =5

• In Flash you check equality with “==”: if

(myVariable==5) {}…

• Arrays are “1” based in Authorware and

“0” based in Flash.

Consider the following array:

myArray["2", "4", "6"]

In Authorware the first value in an

array is referenced by 1; myArray[1]

would equal “2”. In Flash it is referenced

by 0; myArray[0] would equal “2” while

myArray[1] would equal “4”.

Inserting Flash into
Authorware

We first need to insert an existing

Flash SWF movie into Authorware. You

load a Flash movie into Authorware

through the menu: Insert>Media>Flash,

which will open the Flash Asset

Properties dialog, allowing you to select

the file you wish to load. Use the Browse

button to find the .swf you want to

import (see Image I).

The Media and Playback options are

pretty straightforward, but here are two

items worth mentioning:

1. If you link to a file, make sure the link is

relative; otherwise it may break when

you package it.

2. Notice the Image and Sound check-

boxes. These checkboxes decide

whether your Flash movie has visual or

audio elements. Though I imagine

these are checked 99% of the time, it’s

good to know they’re here since they

can have such a dramatic impact on

your Flash movies. I once spent an

hour trying to figure out why the

sound I’d added to my Flash movie

wasn’t playing before I realized I had

the Sound checkbox unchecked – I

had told Authorware not to play any

sounds!

Sending Messages from
Flash to Authorware

Often Flash and Authorware don’t

need to communicate at all – developers

just drop in the .swf and let it play. But that

would make for a really short article, so

let’s take a look at sending information

back and forth between the two programs

and responding to that information. You

may want to have Flash tell Authorware

that a button has been clicked or that a

specific frame has been reached.

Flash talks to Authorware using the

getURL("myMessage") function. You can

add getURL() to buttons or in keyframes

to let Authorware know an event has

occurred or a specific frame has been

reached. GetURL() sends a message, and

you have to set Authorware to capture

the message; you do this using an Event

interaction. Drag an interaction icon to

the Authorware flowline and add a calc

icon to it. Then set the response type to

Event, as shown in Image II.

Once you have set this response type

to Event, the interaction will switch from

a button to an “E”. Click the “E” to change

the properties of the Event interaction.

You need to set this interaction to listen

for getURL commands from Flash movies.

In the Sender section is a list of all the

icons that send events that Authorware

recognizes. In this sample I only have two

Flash movies: “10_10_10” and “10_20_10”.

Double-click the icon (or icons) that inter-

est you. When a “Sender” is selected, the

Event field will display a few choices. We

are looking for the getURL event, since

that is what Flash is using to communi-

cate (see Image III).

Notice the “x” next to each name that

has been double-clicked. You can double-

click again to deselect one or more items.

In Image III I have also double-clicked the

getURL Event – it also has an “x”.

Note: You have to select an event for

each sender. It may look like getURL is

selected for both Icon 10_10_10 and Icon

10_20_10, but it is possible that getURL is

only selected for Icon 10_20_10. Take

your time to get this right, since this is a

crucial part of communication.

We still aren’t quite finished; we have

to capture the actual message sent from

Flash and act upon it. This is done with

only one line of code.

In a calc icon in this Event interaction

you need the following code:

result:= EventLastMatched[#urlString]

It may look complicated, but the code

simply asks for the string sent from the

Flash movie. The “result” will be whatever

is sent from the getURL() function in

Flash. GetURL(“myMessage”) in Flash

would make “result” in Authorware equal

“myMessage”.

Sending messages to Authorware

makes it possible to use Flash to create

menus or user interactions that can be

directly acted upon in Authorware. This

allows Flash to be a tool in your course-

ware, not merely a media type.

Authorware to Flash
Communication often needs to go in

both directions. If Flash can tell

table I

X T R A A ctive X
Platform s Mac / PC PC only

R e quirements N one Flash Player needs to be installed

Transparency Allow ed N ot available

P erform a n c e Low er than Active X B etter than Xtra

Functionality Limited commands M o re commands available

22 • MXDJ.COM

Authorware when a button is clicked,

why not have Authorware tell Flash

which buttons to display? Or tell Flash

when to play an animation or what data

is needed in a chart?

Communicating from Authorware to

Flash is simpler than communicating

from Flash to Authorware. Authorware

uses three main function types –

CallSprite(), getSpriteProperty(), and

setSpriteProperty(). Each function is rela-

tively straightforward, but you have a lot

more options than you have when you

send messages from Flash to Authorware.

Authorware uses CallSprite(@"Flash Icon",

#setVariable, "myVariable", "myValue") to

send messages to Flash.

In Image IV, “myCount”, a variable,

which has to exist in Flash already, would

be set to “5”.

Note: Even though 5 is a number

and “myCount” is most likely a numeric

value, the parameter passed has to be a

string. Therefore, either wrap it in

quotes or use the String() function in

Authorware. If it isn’t sent as a string,

the value of the variable will not be

changed in Flash.

This Authorware sample has two

icons, a Flash movie called “myFlash” fol-

lowed by a calc icon that sets a variable in

the “myFlash” movie called “myCount” to

5. The corresponding Flash movie file is

one frame with a variable called

“myCount” (initially set to “1”) and a text

box that displays “myCount”. The text box

properties look like Image V.

I use the Var property since it auto-

matically updates when “myCount”

changes. Before getting to “The Hard

Part” I want to wrap up with some other

common functions used to communicate

from Authorware to Flash.

The corresponding function to

#setVariable is #getVariable.

result:=CallSprite(@"myFlash",

#getVariable, "myCount")

You can use this to verify that your

#setVariable worked or to check a value if

Flash is also changing a variable’s value.

Finally we have playback functions,

which control the Flash movie timeline

(see Code I).

It may take a while to get used to

these functions, but eventually they

become second nature.

The Rewards
Aside from nice vector animations,

Flash offers additional solutions for tricky

problems in Authorware.

• Components: Download the Flash UI

components sets 1 and 2 and the Flash

Charting Components from

www.macromedia.com/cfusion/excha

nge/index.cfm. These components are

usually easy to configure and use. I’m

not a big fan of the WinControls in

Authorware, so Flash’s Tree Menu and

input text fields offer great alternatives

that are also cross-platform.

• Embedded fonts and text features: Flash

has a great deal of text controls, and I love

that you can call asfunctions or hyperlinks

from text. When you combine this with

embedded fonts it is a great way to han-

dle tricky text issues. Authorware’s inabili-

ty to embed fonts is a hassle, especially

when you have to deal with different font

encodings for different languages. Flash

can allow for HTML, dynamic hot text,

and dynamic text styles – all of which are

difficult for Authorware.

• XML: I like the way Flash handles XML

better than the way Authorware does,

4 • 2004 MXDJ.COM • 23

im
a

g
e

 I
im

a
g

e
 I

I
im

a
g

e
 I

II
im

a
g

e
 I

V

24 • MXDJ.COM 4 • 2004

and Authorware can’t write XML nodes

easily. I tend to embed Flash files when

I’m working with XML.

4. Animated buttons: I’ve made a few

courses with animated buttons that

move to show progress. This can look

very nice, but don’t overdo it.

5. Pan and zoom: Panning isn’t too hard

in Authorware, but zooming is. This is

one of Flash’s strong points. From

Authorware, look into the #viewScale,

#viewH, and #viewV functions. For an

example of this, check out the

“Flash.a7p” show-me file on the

Authorware CD.

The Hard Part
In my last example I used the Var

property of a textField instead of the

more current format of myTextField-

Name.text=myCount. I wanted to whet

your appetite a little before I got to some

of the difficulties you will encounter

when integrating Flash and Authorware.

I used Var because it’s easy. There’s

nothing wrong with easy, but it’s often

more limited than other ways of doing

things. The Var property updates auto-

matically when its corresponding variable

updates. However, when you set the text

field in ActionScript code, it only updates

when that code is run.

You can also use dot syntax with

#setVariable, so CallSprite(@"myFlash",

#setVariable, " myTextFieldName.text",

"5") would also work. But what happens if

you want to do more than just display

this variable in your Flash movie? If you

need to modify the variable and respond

to it, then you need to do it in Action-

Script code. If you need to do it in code,

then you need to ensure that all the nec-

essary information is already in Flash

before that code is executed.

Many beginners have Flash loop so

that the frame containing the needed

code is hit often. This works, but it’s ineffi-

cient and will use a lot of processing

power. It also isn’t very accurate if you

need to act upon more than one simple

piece of information.

The second option is to use stop()

functions in Flash and then use

#setVariable followed by #play to hit the

frame with your code in it after the vari-

able has been set.

This also works, but leads to awkward

Flash files that are confusing to modify

and update. With one variable, it isn’t bad.

But can you imagine a 100-frame anima-

tion with variables set at different times?

This is the hardest part of using Flash

in Authorware: responding to events and

changes in a timely manner. It takes plan-

ning to create integrated projects that

work the way you want without either

using up processes by continuously loop-

ing or creating convoluted Flash files.

Tips and Tricks
Okay, here’s the part you’ve probably

been waiting for – practical solutions.

Code for Flash Icons in Authorware

I almost always attach the code

shown in Image VI to every Flash Icon on

the flowline.

“Movable@IconID” should be pretty

easy to understand: it just means that a

user can’t drag the Flash movie around

the screen. You may want to allow

Movable at times, but usually I want my

Flash movie to stay where I put it.

The second line makes the variable

“FlashID” a reference to your Flash icon,

allowing you to modify the icon without

referring to it by name.

CallSprite(@FlashID…)

Instead of

CallSprite(@"myFlash"…)

Note: With “FlashID” you don’t use

quotes. Use @FlashID, not @"myFlash".

Why is this helpful? A typical

Authorware piece of mine may have a

dozen or more Flash movies, and this code

allows me to accomplish several things:

• Reuse code where applicable: I usually

use code to pass variables or navigate

through a Flash movie file. This allows

me to change parameters without hav-

ing to decide which .swf I need to tar-

get.

• Code is easier to read: “@FlashID” tells

me I’m working with the current Flash

movie. If you use icon names, then it’s

not often clear what you are changing.

(@"01_02_030_Staff.swf")?

• Global controls in Authorware: This is

the biggie. If I always know that

FlashID is the most current Flash

movie, then I can add a pause/play

button that will always work!

Image VII shows some code that I’ve

used for a global pause button. It should

be placed in a perpetual button at the

top of your flowline.

For the pause/play button see Code II.

It’s that easy. You could also add other

code here as well. You may want to tell

the Flash piece it is inactive, or perhaps

toggle the Direct to Screen property so

that is doesn’t take up as many resources.

Code for Flash Movie Completed

I have created a number of courses

that don’t allow users to proceed in a sec-

tion until they have completed all activi-

ties on each page. It’s therefore necessary

to know when a Flash file is finished so

that the Next or Continue button can be

activated.

It is sometimes possible to use the fol-

lowing code in the active if field of your

Continue button:

getSpriteProperty(@FlashID, #Frame) =

getSpriteProperty(@FlashID,

#frameCount)

This won’t work, however, if the last

frame has either submovie clips or

actions the users need to complete. This

is why I tend to add a line of code in each

Flash piece letting Authorware know

when I consider a movie to be complete.

While occasionally you can get away

with checking if the current frame is the

last frame, it is easier to simply add a little

code in Flash to tell Authorware when it is

finished.

im
a

g
e

 V

4 • 2004 MXDJ.COM • 25

26 • MXDJ.COM 4 • 2004

Controlling Flash Files with

Multiple Segments

It is often easier to have one Flash file

with multiple scenes instead of maintain-

ing several Flash files with similar con-

tent. While you want all the content in

the one Flash movie, you’ll most likely

want to control which segment is played,

and when, from Authorware.

There are easy and hard ways to do

this, with the easy way having more limi-

tations. The easy way is to use #goto-

Frame at the appropriate times to get to

the part of the Flash movie that you

want. Here are a few pointers:

• The Flash file will ignore stop() com-

mands in the frame it’s sent to. So if

you use CallSprite(@FlashID,

#gotoFrame, 5) you’ll need a stop()

function in frame 6 or higher or the

Flash movie will simply continue play-

ing. Another possibility would be to

also use CallSprite(@FlashID, #stop)

from Authorware.

• #gotoFrame will not reload the current

frame. I’ve worked around this by navi-

gating twice – once to frame one and

then a second time to the frame I

want. If your #gotoFrame commands

aren’t working, make sure you are

jumping to a distinct new frame.

• Using Frame labels in Flash is a lot safer

than using Frame numbers.

A more complex way of controlling

Flash playback is to create a control frame

in Flash. All navigation takes place from

this frame based on a variable that is sent

from Authorware. So while Authorware

decides when and where to navigate,

Flash actually handles the navigation

internally.

Authorware would use #setVariable

indicating the desired scene and then

would use #gotoFrame to the control

frame. Since the control frame always

uses goto(), it will never be the current

frame for more than an instant.

Advanced Data Sharing
You will most likely reach a point

where you want to send more than a sim-

ple string or number to your Flash movie.

You have to send everything as strings,

but here are a few methods that I have

used to get complex data types to Flash.

Passing Arrays to Flash

Linear arrays aren’t too hard. Say you

have an array “myArray=["fish", 7]” in

Authorware:

1. Convert the Array to a string and

remove the brackets.

temp:=Strip("[]",String(myArray))

2. Send this value to the Flash Movie.

CallSprite(@myFlash, #setVariable,

"PreArray", temp)

3. Navigate to a frame containing the

code in step 4.

CallSprite(@myFlash,#gotoFrame, n)

4. Add the following code in Flash in

frame ‘n’.

myArray=PreArray.split(",")

5. myArray is now an array in Flash that

mirrors myArray in Authorware.

Note: The two things to watch out for

are commas in your Array and European

deployment. In Europe, a semicolon is

used to separate lists instead of a comma.

If either of these is the case, you will need

to loop through your array, adding each

index to a string with a different, perhaps

multicharacter, separator.

A colleague suggested the following

method for sending arrays. In this exam-

ple you would need an empty array in

your Flash Movie called “_array” (see

Code III).

You must ensure that “_array” is

empty, however, as this method will not

clear out pre-existing indexes if the origi-

nal array has a greater length than the

new array.

Multilinear arrays take more effort. I

have had to create a pseudo-subroutine

for those. I’ve never had to pass a proper-

ty list (an associative array in Flash), but I

imagine this could be done with a sub-

routine, as well.

A Fake Listener in Flash

It is much easier to let Flash handle its

own navigation than to have Authorware

tell it which frames to go to. This is

because edits to the Flash movie often

add or remove frames, which can break

all of your #gotoFrame functions if the

frame numbers you jump to change.

Therefore, I built upon the control

frame idea discussed before and created

a control Movie Clip for my Flash movies.

A simple control Movie Clip has two

frames and continuously loops to check

for new information from Authorware.

Frame 1 is shown in Code IV; Frame 2 is

shown in Code V.

This is just a sample; Frame 2 could

also be a case statement, and a real

example would probably have more navi-

gation options. On the Authorware side

you only need to send one variable and

everything else is taken care of by Flash.

CallSprite(@FlashID, #setVariable,

"authorwareEvent", "pause")

or

CallSprite(@FlashID, #setVariable,

"authorwareEvent", "scene3")

If you are fairly comfortable coding in

Flash, an even better solution would be

to use the Watch() function introduced in

Flash MX (see Code VI). Code VI can be

“PAN AND ZOOM IS JUST
NOT SOMETHING I WOULD

CONSIDER IN AUTHORWARE
ALONE, BUT WITH FLASH

IT’S FAIRLY EASY”

4 • 2004 MXDJ.COM • 27

placed on the main timeline and does

not require any looping.

A Pseudo Subroutine

Probably the most complex integra-

tion of Flash and Authorware that I’ve

attempted is to set up a tree menu in

Flash based upon a directory structure in

Authorware. Let’s say I have a course with

frameworks for modules, subframeworks

for lessons, and sometimes subframe-

works for pages. I can’t say I won’t have

deeper frameworks as well, so I can’t limit

my code to three layers deep.

This is too complex to describe here,

but it can be done by looping a decision

icon in Authorware that sends parent and

children information for each Framework

to Flash and then waits until Flash lets

Authorware know that it has added the

nodes to the tree Menu.

Optimization Techniques for
Flash Playback

If you’ve ever dropped a large animat-

ed Flash movie into Authorware, you’ve

noticed that it can slow things down a

lot! Here are some tips for getting the

best playback possible. We’ll mostly be

looking at the display properties.

You should always:

• Keep your Flash files as small (in pixels)

as possible.

• Put your Flash movie on a Layer above

0 and which has no other display items.

• Minimize on-screen events if possible,

in Flash and Authorware.

• Ensure that Mode is Opaque (2) and

Direct to Screen (3) should be checked

when possible.

Let me talk about Mode and Direct to

Screen for a moment. Direct to Screen

will tell Authorware to display the Flash

movie above everything else and is sig-

nificantly faster than placing the Flash

movie on a layer. However, you can’t have

a transparent Flash movie when you

check Direct to Screen – the transparency

simply doesn’t take effect.

You’ll want to use Direct to Screen

unless there is something else that you

need to display above your Flash movie

or if you need the Flash movie to be

transparent. It may be necessary to tog-

gle Direct to Screen on for complex

scenes and off for standard use

(SetSpriteProperty(@FlashID,

#directToStage, true),

SetSpriteProperty(@FlashID,

#directToStage, false)) if you need that

level of control.

Setting Mode to Transparent is a won-

derful feature, but it will slow things

down, especially since you can’t set the

Flash movie to Direct to Screen. You only

want to use transparency when you need

to. There are modes other than Opaque

and Transparent, but they don’t seem to

have any affect on Flash Movies, so stick

to Opaque or Transparent.

If you use Transparent, then also be

sure to set Authorware’s GlobalTempo to

the same frame rate as your Flash Movie

(Using ‘GlobalTempo:=n’) in an

Authorware Calc.)

If you still need to increase playback

performance, you have additional

options in the Options button from the

Properties panel.

Additional Options:

• You can set Quality to Low, which will

turn off anti-aliasing.

• Experiment with Rate. I’m a little fuzzy

on this, but I believe “Normal” skips

frames in the Flash movie if it is lag-

ging behind. Both Lock-Step and Fixed

allow a little more control for frame

playback.

– Lock-Step will match frames per

second to Authorware’s global

tempo (which can be changed in

Authorware with this code

‘GlobalTempo:=n’). I believe this will

force Flash to refresh at this rate.

Flash Asset Help says this is the best

performance of the three options.

– Fixed allows you to set a playback

rate to a specific fps rate.

– Experiment to find what works best.

• Avoid unnecessary looping in your

Flash Movie.

There are other excellent tips in the

Flash Asset documents [path to

Authorware on your computer]\xtras\

FlashAsset\Help\FlashAsset.html. If you’re

still having trouble, post a question to the

Authorware Listserv http://listserv.cc.

kuleuven.ac.be/archives/aware.html.

This is an excellent resource where

new users and experts exchange ideas

and assistance, with Flash performance

being a frequent topic.

Conclusion
I hope that this article has given you

some new ideas as to how to blend Flash

into your Authorware work and provided

enough code snippets to get you started.

I started as an Authorware developer, so

my knowledge of what Flash could do

was limited and learning what was possi-

ble has been a challenge over the years.

Pan and Zoom is just not something I

would consider in Authorware alone, but

with Flash it’s fairly easy. Consider

whether Pan and Zoom would help in

your current courseware.

If you are writing courseware that

involves scheduling or history, consider

whether the calendar component would

make things easier. Would graphing com-

ponents add a nice visual element?

I hope that you are able to use these

samples. Look for these and other source

files on my Web site as well (www.guitar-

learning.com/awflash). Happy Coding!

Derek Stottlemyer has produced a num-

ber of guitar- and music-related software

titles using Authorware, Flash, and

Central. He also develops training and

Web applications for the automotive,

health, and financial industries.

derek@guitar-learning.com

im
a

g
e

 V
I

im
a

g
e

 V
II

28 • MXDJ.COM 4 • 2004

4 • 2004 MXDJ.COM • 29

c
o

d
e

 I
c

o
d

e
 I

II

c
o

d
e

 IV
c

o
d

e
 V

c
o

d
e

 V
I

c
o

d
e

 I
I

CallSprite(@"myFlash ", #goToFrame, 10) – (Notice that
10 here is a number!)

If GetSpriteProperty(@"myFlash", #playing) = False
then

CallSprite(@"myFlash ", #play)
end if

If GetSpriteProperty(@"myFlash ", #playing) = True
then

CallSprite(@"myFlash ", #stop)
end if

--Check to see if the Flash Movie is onscreen. If
DisplayWidth > 0 then it is being displayed.

If DisplayWidth@FlashID> 0 then
If getSpriteProperty(@FlashID, #playing) then--Check
if movie is playing

CallSprite(@FlashID, #stop)-- if so, stop it
Else
CallSprite(@FlashID, #play) -- otherwise restart it.
End if
End if

myList := ["a", "b", "c", 6, 9090, #mySymbol, "Hello
World From Authorware"]
repeat with i := 1 to ListCount(myList)

--_array[0] in Flash is _array.0 in the Flash
Asset Xtra

CallSprite(@flash_id, #setVariable,
"_level0._array."^String(i-1), String(myList[i]))
end repeat

//Look for new information
eventFromAuthorware=_parent.authorwareEvent;
//Since this is a Movie Clip within a Movie Clip, you
have to use _parent to get the variable
‘authorwareEvent’ which is on the main timeline.

//Check to see if we need to respond to an event
if (eventFromAuthorware=="pause"){
_parent.stop();
_parent.subMovie1.stop();
_parent.subMovie2.stop();
//this is the easiest way I’ve found to pause and
play complex Flash Movies
}else if (eventFromAuthorware=="play"){
_parent.play();
_parent.subMovie1.play();
_parent.subMovie2.play();
}else if (eventFromAuthorware=="scene3"){
_parent.gotoAndPlay("scene3")
}

eventFromAuthorware="";
_parent.authorwareEvent="";
//remember to clear both Variables to make sure you
don’t repeat actions.

var eventFromAuthorware;
this.watch("eventFromAuthorware",
function (prop, oldval, newval) {
if (newval == "pause"){
this.stop();
this.subMovie1.stop();
this.subMovie2.stop();
} else if (newval == "play"){
this.play();
this.subMovie1.play();
this.subMovie2.play();
} else if (newval == "scene3"){
this.gotoAndPlay("scene3");
}
newval = undefined;
});

SHOW THE WORLD

“We don’t have a lot of time to write down
documentation...but with Camtasia Studio, we
can document our software with video tutorials.”
—Fred Shepardson, PhD, Mathematician, Management Consultant

www.techsmith.com/mxdev

Full-motion video tutorials
of any application.

30 • MXDJ.COM 4 • 2004

pproximately 10 years ago a

new word started to appear in

programming circles: objects.

The theory was that little bits of code,

doing a specialized job, could be prewrit-

ten and plugged into existing code as

needed.

Several years later a programming

language called C++ was introduced. This

gave the programmer an entire library of

prewritten code called class files. Each

class file had one specific task assigned to

it and could be plugged into any project

easily as needed. This saved program-

mers incredible amounts of program-

ming and debugging. Today, the word

object is used by nearly every program,

including Fireworks.

In this article, we will examine what

objects mean in Fireworks and how they

can save you time and work. We will use

very simple examples to illustrate the

concepts. However, you will easily be

able to apply these same concepts to

more complex scenarios. For purposes of

understanding, we are also going to use

some non-Macromedia terminology.

Begin by drawing a simple circle on

your canvas. You can fill it in with any color

you want. Once finished, select Modify >

Convert to Symbol (or press the F8 key).

You can give it any name you want. For

example, call it myCircle and select the

option to make it into a Graphic.

Whether you realize it or not, you just

created an object. Take a look in the

Library panel by selecting it in Panels (see

Image I).

Think of this as a template that can be

used to create other objects. The Library

panel is handy in that it shows us what

the object looks like and, in the bottom

window, shows us the name and the type

of object it is.

For example purposes, delete the

original circle on the canvas.

Let’s assume our design needs four

circles, one in each corner. All we need to

do is drag the circle, using either the

graphic or the name, to each of the four

corners of our canvas (see Image II).

Believe it or not, you just had your

first lesson in object-oriented design.

Using the template in the library, you cre-

ated four new objects on the canvas. In

object-oriented programming (or OOP)

parlance, we would say that we created

instances of the object. Each one is a

duplicate of the original.

This has already saved us a lot of work

because we did not have to redraw the

circle four separate times. But what hap-

pens if we need all of the circles to be a

different color?

We can now double-click on one of

the circles. This will take us to a symbol-

editing canvas (you can also access the

edit area by double-clicking on the sym-

bol in the Library panel). Change the

color to a different color and select the

Done button, located at the top of the

canvas. All the objects change to whatev-

er color you selected.

Here lies the second benefit of

objects: you can change the object’s

attributes (color, shape, etc.) in one place

and all of the objects will automatically

conform to it.

What happens, however, if we need to

set one of the objects to a different

attribute? For instance, let’s say we want

it to be a different color.

Select the object and then select

Modify > Symbol > Break Apart. The sym-

bol you broke off is no longer attached to

the symbol in the library and can have

any of its attributes changed without

affecting the other instances.

Unfortunately, this also keeps the symbol

from being changed from the library if

you need to do so.

Preparing Your Objects
for JavaScript

We often use our objects within a

programming environment. In most Web

design, the language of choice is

JavaScript. The interesting part about

JavaScript is that it is a variation of the

Java programming language. Java is one

of the most notable object oriented lan-

guages available.

Many times we need to reference the

objects with JavaScript. To do that, each

instance must have a unique name. This

is where I am going to depart from

Fireworks terminology a bit.

Click on the symbol and, in the

Property inspector, name the object in

the Symbol field. Once again, in object-

oriented parlance, we call these names

object references.

reuse

It’s All in the Object

Reusable power is always a plus
by charles e. brown

a

im
a

g
e

 I

im
a

g
e

 I
I

Charles E. Brown is

the author of

Fireworks MX: From

Zero to Hero and

Beginning

Dreamweaver MX.

He also contributed

to The Macromedia

Studio MX Bible.

charles@

charlesbrown.net

4 • 2004 MXDJ.COM • 31

JavaScript, like most languages today,

is case sensitive. Because of that, your

object references should conform to the

following naming conventions.

• No spaces – if you need to make some-

thing look like a space, use the under-

score.

• All lower case, except for mid-word cap-

italization – for example, addressBook.

• Begin with a letter, not a number.

• Only use alphanumeric characters with

the exception of the underscore.

Use names that make it easy to identi-

fy the object clearly.

Using Your Objects
Elsewhere

Up to this point you’ve learned how

to create an object and see how you can

save us a lot of work by being able to

instantiate it on the canvas as many times

as necessary. In addition, we can change

attributes universally.

What happens if we want to use our

objects, or symbols, on different canvas-

es?

Fireworks allows you to export and

import your objects between different

projects.

Using the Library panel, open the

Options menu and select Export

Symbols. You will be taken to a box that

shows you all of the symbols in the pres-

ent project (see Image III).

Here you can select the symbols you

want to export. Once you’ve done that,

select Export. After you select the folder

you want to save your objects into it and

select OK; they will be saved to an exter-

nal PNG file.

If you now want to import your

objects into another project, open the

Library panel in the new project and

select Import Symbols…

Once you maneuver to the folder

that contains your symbol, select OK.

You will be taken to a box that looks

nearly identical to the one you saw

when you exported. (Note: The figures

shown here were created with

Fireworks MX 2004. The screens in

Fireworks MX look a little different but

they have identical functions.) Select

Import.

Your symbols should now be in the

Library panel, as they were in the previ-

ous project.

Building Libraries
Many professional designers build

entire libraries of prebuilt symbols, or

objects, that they can call upon at a

moment’s notice. Fireworks helps us out

even further by bundling libraries of ani-

mations, buttons, bullets, and themes.

For example, if you select Edit > Libraries,

you can see the various classifications.

Image IV shows the Bullets library.

This is the same box you saw when

you just imported. Once again, if you

select the bullet object you want, and

click Import, that symbol will end up in

the Library panel.

If you had selected Edit > Libraries >

Other…, you would have been taken to

the object libraries you exported a few

moments ago.

Summary
Hopefully, you can now see the power

of objects as a timesaving tool. We saw

how to create, name, change, export, and

import objects. We also saw how to access

the objects that Fireworks provides for us.

It all comes down to one very simple

word: reusability. We can create an object

once, and then use it anywhere. This

leads to another phrase: rapid application

development. But that’s for another arti-

cle.

im
a

g
e

 IV
Advertising Index

Advertiser URL Phone Page

ActivePDF www.activePDF.com 11

CFDynamics www.cfdynamics.com 6

CFUN www.cfconf.org/cfun-04/ Cover III

EdgeWebHosting www.edgewebhosting.net 13

Electric Rain www.erain.com/mxdev.asp 73

FuseTalk www.fusetalk.com 19

HostMySite.com www.hostmysite.com/mxdj 25

Interakt http://www.interaktonline.com Cover II

Macromedia www.macromedia.com/go/2004 9

Macromedia www.macromedia.com/into Cover IV

Seapine Software www.seapine.com 3

ServerSide www.serverside.net 29

TechSmith www.techsmith.com 29

WebCore Technologies www.webcoretech.com 27

im
a

g
e

 III

ARE YOU A

JIGSAW JIGSAW AFICIONADO?

by joyce evans

32 • MXDJ.COM 4 • 2004

JIGSAW

4 • 2004 MXDJ.COM • 33

34 • MXDJ.COM 4 • 2004

Once the pieces are made you can

get portions of an image into each piece

– it really is simple! Once the puzzle is

done you can bring it into Dreamweaver,

where you’ll add the ability for each piece

to use draggable layers.

Puzzles are great fun and can be

incorporated into many different kinds of

sites. But keep in mind that the tech-

niques you learn here apply to more than

puzzles. For instance, the drag layer

behavior can make any layer movable

and can be used to drop items into a

shopping cart. The techniques for making

special shapes and getting images inside

them works for any image you may want

to place in a special shape. Image I is

what the puzzle will look like when seen

in a browser. Look at Image II for steps

1–4.

1. Start a new canvas and draw a

170x185 rectangle and a 65x45 ellipse.

2. ALT-drag out another copy of the

ellipse. Position them on the rectangle

and make each one a different color

from the rectangle to make them easi-

er to edit.

3. Use the Subselection tool to select the

ellipses. Alter their shape slightly and

position them with the Pointer tool.

4. SHIFT + Select all three objects and

choose Modify > Combine Paths >

Union.

5. Image II is the corner shape of the jig-

saw puzzle. Now you need to make

another puzzle shape with four “tabs”

(see Image III). Use the same method

as in the earlier steps to create a shape

similar to this one.

Top Row
This puzzle will have nine pieces in

total. By the time you’re finished you’ll be

able to make a puzzle with as many

pieces as you want.

1. Position the corner piece in the top left

corner of your canvas.

2. ALT-drag out a copy of the shape and

then choose Modify > Transform > Flip

Horizontal, placing this copy at the

right side of your canvas.

3. To determine how wide the canvas

needs to be, place the top corners of

the shape with four tabs between the

two corner pieces (see Image IV).

Adjust the right side if necessary.

4. Choose Modify > Canvas > Fit Canvas.

5. Make sure both corner pieces are

aligned to the top of the canvas at

y:0.

6. Move the center shape to the side for

now and change its fill color (so you

can better see what you’re going to

do next).

7. Draw a red rectangle to fill the space

between the corner puzzle pieces

(see Image V). Try lowering the opaci-

ty to see through to the tabs on the

corner shapes while you’re drawing.

Make the rectangle 185 pixels high

(the same as the base shape).

8. Put the opacity back up to 100% if

you lowered it. Select the left corner

shape, press SHIFT, and select the

center shape.

9. Copy and paste the left-corner shape

and hide the bottom copy in the

Layers panel.

10. Select the right-corner shape, copy

and paste it, and turn off the visibility

of the bottom copy in the Layers

panel.

You’re making all these copies

because once you use the corners as

“cookie cutters” the original shape will be

gone.

11. Move the red rectangle down in the

Layers panel so that it sits below the

gray shapes (see Image VI).

12. Select the left corner shape then

SHIFT+ to select the red shape.

Choose Modify > Combine Paths >

Punch. As you can see, you made the

shape in the side of the center puzzle

piece that fits the corner shape (see

Image VII).

13. Select the right-corner shape,

SHIFT+select the red shape, and

choose Modify > Combine Paths >

Punch again.

14. Turn your corner pieces’ visibility back

on in the Layers panel. The top row of

the puzzle is now done (see Image

VIII).

Center Row
1. Draw a rectangle that’s 170x185 and

make one more copy. Place one rec-

tangle on each side of the canvas.

2. Copy each of these new rectangles

and hide these copies in the Layers

panel.

3. Move the center shape so that it sits

above the side pieces (you may need

to adjust the center piece’s size).

Change the height and/or width so

that it fills the center area.

4. Select the center piece and copy and

paste it one time. Hide the view of the

duplicate copy. Ensure that the center

piece is at the top of the Layers panel

(see Image IX).

5. SHIFT-select the top center piece, and

each of the side pieces of the top row

(see Image X). With all three pieces

selected, choose Modify > Combine

Paths > Punch.

6. Make a copy of both top left and right

corner pieces and hide them. You’re

going to use the corners to punch out

the tab in the top of the side pieces of

the second row.

7. Turn the visibility of the four-tabbed

center piece back on. Move the copies

of the corner pieces and the center

piece up into the Layers panel so that

they’re above the blue side pieces (see

Image XI). (Now you can see why using

different colors while building your

puzzle is a good idea.)

8. SHIFT+select the left corner and the

left side and choose Modify >

Combine Paths > Punch. Repeat this

for the right-hand side of the puzzle.

Turn the visibility back on for the cor-

ner shapes on the top row.

Bottom Row
1. Make a copy of each top corner shape

and drag them down to the bottom of

your canvas. Use Modify > Transform >

Flip Vertical for both shapes and posi-

tion them as shown in Image XII. If

your canvas isn’t large enough to fit all

the shapes, choose Modify > Canvas >

Canvas Size and make it larger.

2. Make two copies of each bottom cor-

ner shape and hide two of them. You

should have three bottom corner

shapes with only one visible.

3. Drag the bottom corner shapes above

the blue sides so that you can see their

gray tabs above the blue shapes (see

Image XIII).

4. SHIFT+select one of the gray bottom

corners and a left blue side shape and

punch it as usual. Repeat for the other

side of the puzzle.

5. Turn the visibility back on for each bot-

tom corner piece.

6. Draw a new rectangle to fit into the

remaining space. Make it bright yellow

(see Image XIV).

4 • 2004 MXDJ.COM • 35

image I

image II

image IV

image VII
image VI image VIII

image IX

image X

image XI

image XII

image XIII image XIV

image XV

image III

image V

36 • MXDJ.COM 4 • 2004

7. Copy and paste the four-tabbed cen-

ter piece and hide the copy. Move it

up on the Layers panel so that it sits

above the yellow shape.

8. SHIFT+select the center gray shape

and the bottom yellow shape and

Modify > Combine Paths > Punch.

9. Select the bottom corner shapes and

drag them up the Layers panel so

their tabs are visible above the yellow

shape.

10. SHIFT+select a bottom corner and the

yellow shape and punch (see Image

XV). Repeat for the other side.

11. Choose Modify > Canvas > Fit Canvas.

You should now have a total of nine

shapes in the puzzle. If you still have

extras in the Layers panel, delete

them now.

12. Change the object names in the

Layers panel. Working left to right and

top down, name the top left corner

shape p1, the top center shape p2,

and so on.

13. Save the file as puzzle_shapes.png

and keep it open.

As you can see, it isn’t difficult to

make the puzzle pieces, it just takes a

while. Remember to always make a copy

of the piece that’s acting as the “cookie

cutter”. Selecting a piece makes it easy to

identify in the Layers panel so you can

move the correct one above the shape.

Adding a Picture
Let’s add images to the puzzle pieces

to prepare them for use in Dreamweaver.

You’ll add a drag layer behavior in

Dreamweaver, which will allow the pieces

to move.

Prepare the Structure

Import an image the size of your puz-

zle. Ideally you’d know the image size

prior to making your puzzle pieces.

1. Back in your puzzle_shapes.png docu-

ment, add a new layer called Image

and drag it to the bottom of the Layers

panel. Rename Layer 1 as Pieces.

2. Select the Image layer and import

(CTRL+R) a photo (in my case

parrot.png). Click at the top left of the

document to place the image.

The current puzzle shape colors don’t

matter so don’t bother changing them.

Each piece will be used as a mask. You

now need to place each piece on its own

frame.

3. Select the Pieces layer and choose

Select > Select All. Open the Frames

panel and from the Options pop-up

menu, select Distribute to Frames.

Click on a frame; you’ll see that it con-

tains one puzzle piece (see Image XVI).

Each frame contains a piece except for

Frame 1, which is the image (see Image

XVII).

4. You want the photo to be visible in

every frame so you’ll need to set it to

be shared by all layers. Double-click

the Image layer name and check Share

across frames (see Image XVIII). Click

OK in the warning dialog that pops up.

5. Double-click the Image layer again

and deselect the Share this Layer

option. Another dialog opens.

Basically, instead of sharing the layer

the image will now be copied into

each frame automatically. Click on All.

What you just did was copy the image

to every frame instead of simply shar-

ing the same image. You’ll need an

actual copy in every frame.

Note: Another way to get the image

placed precisely in all frames is to select it

and choose Copy to Frames > All from

the Frames panel options menu.

6. You can now select and delete Frame

1. The frames will renumber automati-

cally. All you need now are the frames

with the puzzle pieces in them.

7. Save your file. A copy will be saved as

puzzle2.png in the download folder.

Putting the Image

into the Pieces

Now you need to get the part of the

image below each piece into the puzzle

piece. It sounds tough, but wait until you

see how easy it is!

Image XIX corresponds to steps 1–3

below, but the cloverleaf is cropped out,

indicating that it is masked.

1. Select Frame 1; select the puzzle piece

and cut it (CTRL+X).

2. Select the parrot image and choose

Edit > Paste As Mask. Your piece may

look different than mine depending on

how your pieces were distributed to

the frames.

3. To make it look more like a puzzle

piece select Bevel and Emboss > Inner

Bevel from the Effects menu. Change

the width to 3.

You’ll repeat steps 1–3 for each puz-

zle piece, so to save on the repetition,

let’s make a command. It’ll save you

repeating the previous three steps for

each piece.

4. Open the History panel. Select the last

two operations (which should be Paste

and Set Effects). Notice that the Cut

operation is separated between black

lines, indicating that it cannot be

added to the command.

5. Select the Save As command from the

History panel’s Options menu and

name this command puzzleMask.

6. Open the Frames panel and select

Frame 2 (see Image XXII).

7. Cut the puzzle piece in Frame 2 and

then select the image.

8. Choose puzzleMask from the bottom

of the Commands menu.

9. Repeat steps 7 and 8 for the remaining

frames.

Background Image

You now have nine frames, each con-

taining a puzzle piece. You’ll need to add

“It isn’t difficult to make the puzzle pieces,
it just takes a while”

4 • 2004 MXDJ.COM • 37

image XVI

image XVIII

image XIX

image XVII

image XXI
image XX

38 • MXDJ.COM 4 • 2004

the background image in again. The

background will be the image the user

uses as a guide for putting the puzzle

together.

1. Select the last frame in the Frames

panel and choose Duplicate Frame

from the Options menu. Check After

the current frame and click OK.

2. In frame 10 (the new duplicate) select

the puzzle piece and choose Modify >

Ungroup. Deselect by clicking off the

document then select the puzzle piece

and delete it. You’ll be left with just the

image.

3. Select the image and choose Adjust

Color > Hue/Saturation from the

Effects menu. Change the saturation

and lightness as needed.

4. In the Effects area you may see the

inner bevel effect on the image, select

it and click the minus (-) sign.

5. Double-click Frame 1 and name it

“p1”. Repeat for all 9 frames except

number 10 the last one. Name it

“background” (see Image XX). Save

your file.

Exporting as CSS Layers
Let’s export the frames as CSS layers.

Fireworks will export the individual

frames as individual CSS layers and do

part of the work for you in order to make

finishing the puzzle in Dreamweaver

faster. Fireworks will make the HTML

page automatically.

1. Choose Modify > Canvas > Canvas

Color and make it transparent (see

Image XXI.

2. In the Optimize panel, select GIF as the

export file format and set the Colors to

128. Choose Index Transparency and

set the Matte to none.

3. Choose File > Export. In the Export dia-

log box, navigate to your site folder. In

the Save as type field, select CSS

Layers from the drop-down menu and

Fireworks Frames from the Source

drop-down menu. Check Put images in

subfolder so that Fireworks will auto-

matically add a separate images folder.

Also check Trim images and then click

Save to export.

The trim image option will cut away

the extra masked area of the entire image

and leave you with only the puzzle piece.

Powering the Puzzle
in Dreamweaver

If you don’t already have

Dreamweaver installed, you can get a 30-

day trial from Macromedia (www.macro

media.com/downloads). You’ll need to

register if you haven’t before – but it’s

free.

You’ll be adding the Drag Layer

behavior to make your puzzle pieces

move. The Drag Layer behavior in

Dreamweaver allows you to drag layers

within an HTML page. There are a lot of

possibilities built into the behavior. You

can choose to constrain where the layer

is dragged to, and by how much, and can

even have it snap into place when the

piece gets close to the area it belongs in.

1. Open Dreamweaver. Choose > Site >

Manage Sites > New > Site. Name the

site “Puzzle”. Click the folder next to

Local Root folder and navigate to your

puzzle folder. Select it and open.

2. Open the Files panel (F8). Double click

on the puzzle_done.htm file to open it

(this is the file that Fireworks generat-

ed). It contains all the puzzle pieces in

it even though you can’t see them.

3. Open the Design (panel groups on the

right) panel and click on the Layers tab

to open the Layers panel (see Image

XXII). Select a puzzle piece and notice

that it’s in its proper position. Using the

Layers panel is going to be the only

practical way to select these layers.

Notice in the Layers panel that the

name you gave to each frame in

Fireworks has now become the layer

name in Dreamweaver (see Image

XXIII). A quirk of Fireworks is that it

gave the layers the name of the image.

If you select one of the layers and look

in the Property inspector, notice that

the Image name is the same as the

layer name. This won’t work because

layers must have unique IDs.

4. Select the first numbered layer. In the

Property inspector, delete the name

and change it to “pz1” and press

Enter/Return. Repeat this for all nine

puzzle pieces giving them unique

names.

5. Select the <body> tag in the Tag

Selector. The Drag Layer behavior will

be attached to the body tag using an

onLoad event.

6. Click on the Tag Inspector panel

group and open the Behaviors panel.

Click the Add (+) button and select

Drag Layer from the list (see Image

XXIV).

7. The Drag Layer dialog box opens (see

Image XXV). Select pz1 from the Layer

drop-down menu. Notice that all the

layers in the document are listed.

8. Leave Unconstrained checked. Click

the Get Current Position button.

These are the coordinates that will be

used to determine whether the piece

is dragged to the correct position.

9. Set the Snap if within field to 15 pix-

els. When the user gets to within 15

pixels, the piece will snap into place.

10. Close the dialog box and repeat steps

8–11 for every puzzle piece (but not

the background).

11. Save your file. Now select a puzzle

piece in the Layers panel and click

and drag on the white square handle.

Drag the piece to the right side. Mix

them up and stack them. When you

select a piece that is at the top of the

document you won’t see the white

square handle you drag with (see

Image XXVI). Use the keyboard arrow

keys to lower it. Then you can drag it

over to the side.

12. Save and preview. Test out your puz-

zle. Drag each piece into place to be

sure you didn’t forget to add the Drag

Layer behavior to one of them (see

Image XXVII).

And voila, you’re done!

Joyce J. Evans is a training veteran with

over 10 years of experience in educa-

tional teaching, tutorial development,

and Web design. She has presented at

conferences such as Macromedia MAX

2003 and TODCON. Joyce has

authored books including Macromedia

Studio MX 2004 Bible, Dreamweaver

MX 2004 Complete Course, and others.

Joyce is a Team Macromedia volunteer

and her work is also be featured in the

Macromedia Design/Developer center

and the Macromedia Edge newsletter.

Her Web sites are www.JoyceJEvans

.com and Idea Design (www.je-ideade

sign.com). Joyce@JoyceJEvans.com

4 • 2004 MXDJ.COM • 39

image XXIV

image XXII

image XXVI

image XXIII

image XXV

image XXVII

40 • MXDJ.COM 4 • 2004

Printing

if you’ve only used FreeHand MX

for W eb-based applications, then

it’s tim e you learned about the

broader world of print.

FreeHand was originally

designed to give artists a way to

put drawings onto paper via the

com puter. Even though the

program ’s scope has grown far

beyond early expectations, you

can still achieve superior printing

results.

by ron rockwell

Bulletproof

4 • 2004 MXDJ.COM • 41

42 • MXDJ.COM 4 • 2004

PostScript Printing
The most important thing to remem-

ber about FreeHand is that it requires a

PostScript printer to achieve acceptable

results. Yes, you can print to a desktop

non-PostScript inkjet printer, but the out-

put is sometimes less than what was

expected.

PostScript is a page description lan-

guage introduced by Adobe in 1985. Its

application on the Apple LaserWriter

brought Macintosh computers fully into

the front-runner position in the growing

desktop publishing field. A PostScript file

interprets or describes text and images in

a device-independent fashion. Device

independence means that the file can be

used on any PostScript printer without

regard to printer resolution or other

printer attributes. The same file will print

to the capacity of your PostScript desk-

top printer or the service bureau’s RIP

(Raster Image Processor).

Non-PostScript Printing
Many factors determine what is going

to print and what won’t print from a par-

ticular file on a given day to one printer

or another. To get good results from

imported images, set Preferences>

Redraw>Better – but set slower display,

and Onscreen Resolution to Full. For the

most part, you’ll lose certain effects or

features that you may have fallen in love

with on screen.

Some of those items may be very

important to your work. For instance, a

placed EPS file (EPS stands for

Encapsulated PostScript – that’s your first

clue) will print only the on-screen pre-

view, not the actual file. That means a

jaggy, totally unacceptable print. Then,

add a bitmap effect – any bitmap effect –

and you’ll see more jaggies. However,

text effects (Highlight, Inline,

Strikethrough, Shadow, Underline, and

Zoom) do print as you see them on the

monitor, but will not output correctly to a

high-end RIP at the service bureau. For

that reason alone you should get in the

habit of creating your own special effects

on text if you plan on doing commercial

printing.

Without special third-party software,

you cannot print “printer marks” on most

non-PostScript printers either. Printer

marks are needed by professional print-

ers to properly set ink levels, crop or trim

the page, and provide information about

the color of ink that is to be printed.

Separations is the term given to the

result of creating negatives for each color

that is going to be printed on the page.

It’s good practice – and required by most

service bureaus or printers – to provide a

complete set of separations with the fin-

ished job. Printing your own separations

is necessary for you to proof the work.

Non-PostScript printers usually don’t

allow you to print separations without

extra software. Since we’re after profes-

sional results, the rest of this discussion

will assume the use of PostScript printers.

Printer Resolution
We get used to seeing our artwork on

a monitor and too frequently forget to

set the proper parameters for the docu-

ment to be output correctly. FreeHand

MX tossed a few new features into the

parameter soup to digest, starting with

raster effects. For spice, add a pinch or

two of printer resolution, raster effects

resolution, and document raster settings.

Printer resolution has been around for

years, and is set in the Document window

of the Properties panel. The default is 300

dpi (dots per inch – the number of

halftone dots per inch that are printed on

the page), but you have several other

choices in the drop-down menu. Printer

resolution uses this information to gener-

ate the number of steps in auto-created

objects such as blends and gradient fills.

The higher the printer resolution setting,

the more steps in the blend or fill. To see

this in action, choose a low number, such

as 300, and create a blend between two

different colored objects. Note the num-

ber of steps in the blend. Then raise the

resolution to 2540 and blend the same

two shapes. You’ll see many more steps in

the blend. A high number will give you a

smoother blend effect, but it also compli-

cates the file. That equals nonproductive

waiting. It’s important to remember that

you can change the number of steps in a

blend at any time. Just enter a new num-

ber in the Number of Steps box in the

Object panel while you have a blended

shape selected.

When you apply any of the raster

effects (shadows, blurs, glows, emboss-

ing) to an object, steps must be taken to

ensure that you will achieve the desired

result when you go to print or press.

Select an object with a raster effect and

open the Options menu in the Object

panel. Midway down the list of options

you’ll find Raster Effects Resolution.

Select this option and the Object

Resolution dialog box opens (see Image

I). The default setting is 72 dpi, which is

fine for Web use, but not at all acceptable

for print work. Select 72 dpi from the

drop-down menu while you’re working

on the project and FreeHand will react

more quickly. When you’re ready to go to

press, change the resolution to 300.

Notice the “Use Document Raster Effects

Resolution” option. Choosing this option

overrides any setting that appears in the

Resolution field. If you set this option to

“on” in your default page, then all objects

with raster effects will use the Document

Raster Effects you set.

So, where do you set Document

Raster Effects? Go to File>Document

im
a

g
e

 I
im

a
g

e
 I

I

4 • 2004 MXDJ.COM • 43

Settings>Raster Effects Settings and a

box very similar to the Raster Effects

Resolution box opens (see Image II). If

you’re printing in CMYK (and only if all

your colors are CMYK), click the “Optimal

CMYK Rendering” box. From that point

on, any objects with raster effects will

have adequate resolution. You can over-

ride any effects you wish by dropping

back to the object level described earlier.

Again, your work will go faster with a 72-

dpi setting (although the image may look

a little coarse), but remember to switch

to 300-dpi resolution as you go to press.

Your service bureau will not make this

adjustment for you – it’s your responsibil-

ity.

Why All the Fuss?
In short, if you don’t deal with resolu-

tion while you’re working on the job,

you’ll deal with extra printing costs to

have your job printed again. Do a quick

test on your own by creating several

objects with various raster effects

applied. Give them a resolution of 72 dpi.

Clone them and raise the resolution to

144; then clone again and change the

resolution to 300. At 100% size on screen,

they look pretty much the same, but

print the page and examine the results.

It’s really important to realize that all the

raster effects are RGB, not CMYK. If you’re

using spot colors, those colors are con-

verted to RGB for screen display. Again,

they look great on screen, but when it

comes to printing them, the conversion

from RGB to CMYK is often less than

pleasing, so proof your work often and

critically. If it doesn’t look right when it

comes off of your desktop PostScript

printer, it won’t look any better coming

off the press. For best results you will also

want to “set on-screen image resolution”

to “Full” when printing documents with

Raster Effects.

We’re Caught in a Trap
You probably know that if you place

one colored object on top of another in

FreeHand the colors are not mixed or

multiplied as they are with traditional

paints. Instead, FreeHand “knocks out”

the area of overlap and places pure col-

ors in the two shapes. When two colors

abut on-screen, you see no space

between them because you’re looking at

adjacent pixels that are fixed on the mon-

itor. Getting those two colors to touch

exactly on paper is quite another story.

You usually end up with a sliver of white

or a dark color that is the combination of

the two colors.

To minimize slight misregistration,

you must create traps. Check with your

service bureau or printer before proceed-

ing – some have special trapping soft-

ware that does the job for us, and to their

exact specifications. Traps are basically

the minor overlaps of colors that elimi-

nate possible white spaces where the col-

ors are supposed to abut. To create a trap,

you either choke or spread one color

onto another by printing a tint of the

lighter color on top of the darker color. In

Image III you can see the results of trap-

ping. You can also see tiny “o” shapes in

the overlapping areas. If you go to

FreeHand Preferences>Redraw and select

Display Overprinting Objects, you’ll

acquire this on-screen verification that

overprinting is going on. At times it can

be visually annoying, but if you’re doing

any trapping it’s absolutely essential that

you see what you’re doing. Be advised

that basic text colored black is set to

overprint. With this option checked, the

text will be filled with “o” shapes if you

convert the text to paths. The “o” shapes

will not print.

Trapping can be done easily by using

the Trap Xtra. Just select the inner object,

Shift-select the outer object, and choose

Xtras>Create>Trap (or click the Trap icon

if you’ve placed it in your main toolbar). A

dialog box opens (see Image IV) where

you can input the size and type of trap

you want. The size of the trap depends

entirely on your printer’s specifications,

usually a quarter-point to half-point trap

is sufficient for offset printing – screen

printing needs a bit more – check with

your printer before setting the traps. The

Reverse Traps option will make the over-

printing color dark instead of light.

To create a trap manually, simply

select the lightest-colored object and

click the Add Stroke icon in the Object

panel. Make the stroke equal to double

the width you want to use as the trap.

Give the stroke a suitable (around 40%)

tint of the light color, and set the stroke

to overprint. The center portion of the

light-colored object will correctly knock

out of the darker color and the outside

half of the stroke will overprint the dark

color, eliminating any white space caused

by misregistration.

Spot or CMYK Colors?
As you design a print project, certain

decisions must be made concerning ink

colors. FreeHand allows you to create col-

ors in the Color Mixer panel in many color

modes, including RGB and CMYK. If you

will be printing the project, avoid creat-

ing colors in the RGB or HLS mode. Those

color modes are for on-screen viewing

and must be converted to CMYK in the

printing process. Due to the limitations of

the process, or CMYK, method of print-

ing, color conversion may work well or

not. Certain RGB colors will not give

pleasing results, and most colors will

show a slight or noticeable color shift. If a

specific color is desired or required, then

you should consider using a spot color.

Spot colors are specific ink colors from

ink manufacturers; you can find several

libraries of them in the Swatches options

menu. The ink color will be interpreted

and displayed on your monitor in RGB,

and will be marked with three dots (red,

green, blue – RGB) in the Swatches list,

indicating that it is a spot color. Don’t be

lulled into the beauty of any color you

see on screen, as the calibration of your

monitor along with the RGB interpreta-

tion may have no bearing on the true

color. Instead, invest in, and learn to trust,

a printed color swatch book. PANTONE

makes a “solid to process” book that is

invaluable for process printing. It con-

tains hundreds of solid colors printed

next to their CMYK breakdown so you

can see what the color conversions will

produce.

Collect for Output
FreeHand makes a heroic attempt to

help you produce a trouble-free print job

with the Collect for Output command.

When you select this feature from the File

menu, you will be asked to save the doc-

ument before continuing. A dialog box

will open (see Image V), giving you the

options of adding various types of infor-

mation about the document in a simple

text-only file that your commercial print-

er or service bureau personnel can open

and read. Each category has a list of

options; holding down the Option/Alt

key as you click any of the options will

either deselect the entire list, or select all

the options in the list. Unless you only

want to see certain information for your-

self – to get a list of fonts, for instance –

leave all the options checked for the

report that you give the service provider.

Close the box by clicking Report.

A Save window will open, giving you

the opportunity to place the report and

all of the document’s data in a particular

location. This data includes all the fonts

and placed images and EPS files you have

used in the document. That can amount

to a large number of files, so it’s a good

idea to create a new folder for every-

thing. The Save As name refers to the

document record itself. When you’ve

found a place for the files and named the

record, click Save. FreeHand will then col-

lect everything that pertains to the job

for you. If placed files or fonts have been

moved or there are other problems with

the files, FreeHand will tell you that there

were problems collecting the data. If that

happens, look through the new folder to

try to see what’s missing. Usually it’s a

linked file that you’ve worked on and

inadvertently moved. If you have several

placed bitmap images or EPS files, open

Edit>Links to see a list of all the files in

your document. Compare that list to the

output folder and then manually gather

the missing files. Alternatively, you can

relink the files and Collect for Output

again.

Test Prints and Separations
As you begin to wrap up your job, it’s

necessary to proof-print the job. Doing so

will eliminate 99% of the problems your

service bureau or

commercial printer

will encounter. It

tells you how well

you’ve done your

job, and ultimately

saves you money

with do-overs. You

need to print both

a composite print

and a set of separa-

tions.

Choose

File>Print Setup,

and select your

printer (assuming

you’ve got a PostScript printer) and the

page orientation. Then choose File>Print.

You can print a single page or a contigu-

ous page range by entering numbers in

the fields. Then select FreeHand MX from

the print options drop-down menu (see

Image VI).

If your document is smaller than the

paper that you are going to print on,

then choose Uniform from the Scale %

drop-down menu. If you are printing a

letter-sized document onto a letter-sized

sheet of paper, there will be no room for

printer marks, so you will be forced to

choose Fit On Paper and print a reduced

version of the job. It’s a proof, so don’t

lose too much sleep over it. Click the

Advanced button to open the Print Setup

window (see Image VII).

Print Setup is really the heart of the

printing operation. The left side of the

window is dominated by the Preview

window. I keep mine set to Preview, but

Keyline and X-Box are also available

views. It’s a little-used feature, but you

can click and drag the preview image in

its window. Only the parts of elements

that show in the window will print –

good for test-printing partial pages with-

out using the Area Tool. Start by choos-

ing the level of quality in the Print

Setting menu – use Quality PS Level 2 or

Normal for most jobs. Select the Use PPD

option to search for the correct PPD

(PostScript Printer Description) for your

printer. In the Separations tab, you can

choose to print a composite page or sep-

im
a

g
e

 I
II

44 • MXDJ.COM 4 • 2004

im
a

g
e

 V

im
a

g
e

 V
I

im
a

g
e

 I
V

46 • MXDJ.COM 4 • 2004

arations. By selecting the Print Spot

Colors As Process option, you convert

the document’s spot colors to CMYK for

the purpose of printing. Doing so will

usually cause some sort of color shift, so

pay attention to the composite print. The

separations window has three columns

on the left: P (a check mark will Print the

color, click the check to prevent the

printer from printing that color), O (for

Overprint – this causes the color to over-

print all other colors in the document –

it’s only advised in rare instances, be

wary), and Angle (the angle of the rows

of dots that make up the screens in your

image – C=15, M=75, Y=0, K=45 to pre-

vent most moirés). The other field’s

defaults are usually adequate.

Click the Imaging tab (shown on the

left side of Image VIII). Here you can

choose to print labels and marks or not.

FreeHand will place crop marks that

match your page size if you check that

option. If you’ve designed a business card

in the middle of a letter-sized page, the

crops will be at 8.5 x 11 inches, not 2 x 3.5

inches. If you want FreeHand to apply

crop marks, make the document exactly

the size you want it to print. Registration

marks, separation names, and file name

and date are all important information

that you should use, and they’re free –

use them. To proof your separations (and

save a lot of black toner), choose

Emulsion Up, Positive Image. A film out-

put is usually Emulsion Down, Negative

Image, termed RRED (Right-Reading

Emulsion Down). The right side of Image

VII shows the Paper Setup tab. Make sure

the page orientation matches your Page

Setup orientation. Otherwise, this panel

should reflect your document’s settings.

Click the OK button to close the window.

and

Click the Print button.

Depending on the complexity of your

project, FreeHand will whirr for a few sec-

onds before your separations come out

of the printer. The default settings will

give you a positive image of each color

separation. Check each separation page

against a composite print so you can see

where overprinting and knockouts

appear. Look for anything out of the ordi-

nary. If something is wrong, this is the

time to correct it – don’t blindly hope the

service bureau will fix your errors. No one

knows your job as well as you do.

Summary
FreeHand is a very powerful applica-

tion; with it you can print just about any-

thing from business cards to multi-page

catalogs to packaging. Communication

with your printer or service bureau will

speed up your learning curve and prof-

itability.

Acknowledgments
Many thanks to Delores Highsmith,

David Spells, Peter Moody, John Nosal,

and other engineers at Macromedia for

the technical editing they provide.

im
a

g
e

 V
II

im
a

g
e

 V
II

I

Illustrator, designer,

author, and Team

Macromedia member

and MXDJ FreeHand

editor Ron Rockwell

lives and works with

his wife, Yvonne, in the

Pocono Mountains of

Pennsylvania. He is

the author of

FreeHand 10 f/x &

Design, and coau-

thored Studio MX

Bible and the Digital

Photography Bible. He

has Web sites at

www.nidus-corp.com

and www.brain-

stormer.org.

guru@brainstormer.org

4 • 2004 MXDJ.COM • 47

FREE*CD! $198.00
VALUE!()

— The Complete Works —
CD is edited by CFDJ Editor-in-Chief Robert Diamond and organized

into 23 chapters containing more than 450 exclusive CFDJ articles!

All in an easy-to-navigate HTML format! BONUS: Full source code included!

ORDER AT WWW.SYS-CON.COM/FREECD

*PLUS $9.95 SHIPPING AND PROCESSING (U.S. ONLY)

Secrets of the ColdFusion Masters
Every CFDJArticle on One CD!

Only from the World’s Leading i-Technology Publisher

©COPYRIGHT 2004 SYS-CON MEDIA. WHILE SUPPLIES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE. ALL BRAND AND PRODUCT NAMES ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

48 • MXDJ.COM 4 • 2004

his past summer I decided that my

courseware site needed a com-

plete overhaul. It was, in fact, a bit

of an embarrassment. As a teacher, writer,

and lecturer I had been sticking my

courseware and lectures notes up on a

site that was designed more for conven-

ience than anything else. After quietly

suffering through the jabs of my students

and my colleagues, I decided the time

had arrived to bring order to the chaos.

In August 2003, I sat down with a very

talented Toronto graphic designer, Shawn

Butchart, and asked him, as I succinctly

put it, “to give my site an enema.” After a

lot of the usual discussion we settled on

a rather interesting design and I went to

work exploring the joys and the frustra-

tions of the world of CSS-Positioning, or

CSS-p. When the redesign went live in

November, it met with the approval of

my students and peers and, as is normal, I

thought I would live with the design for

the next couple of years (see Image I).

Then the wheels started to wobble.

One-third of the site was devoted to a

series of tutorials and Studio MX–related

articles I have written. They can be found

at www.tomontheweb2.ca/MXtras

/Tips_techniques.htm.

Image II shows a redesigned page –

this area will grow, and I hadn’t incorpo-

rated this rather important fact into the

design of the site. In November of 2003

there were about a dozen tutorials.

Today, a few months later, the number is

approaching 30 and will most likely crack

the 50 mark by the end of this year.

Rather than solve a problem, I had creat-

ed a bigger one.

The problem had two aspects to it.

The first was the entry page listing the

tutorials. There was no real organization

to it. I would prepare a tutorial for the

students and tack its description to the

bottom of the list. This is workable if you

have only a handful of tutorials. It falls

apart when the number grows. Trying to

find a specific tutorial, “Color Correction

in Fireworks,” for example, requires the

user to hunt through the page. I needed

to rethink this page and make it more

accessible to my visitors.

The second problem was the actual

process of adding a tutorial. Though I was

using a “template” the actual creation of

the page was a time-consuming process.

The text would have to be flowed into

the page; the images would have to be

added; the links, if there were any, would

get tossed in; and the page would be

saved to the directory. The listing page

would then be opened, the description

and link created, and then it would be

uploaded to the server. It was inefficient

and, if allowed to continue, would

become an administrative and site man-

agement horror show.

The time had arrived for me, to bor-

row a phrase from my latest book, “to get

dynamic or get dead.”

This two-part article will take you

through how I did it. It most likely won’t

be pretty because Web design based

upon a dynamic paradigm is an inexact

science. Planning data, data flow, data-

base choice, middleware choice, and so

on are all subjective, not objective, deci-

sions. The whole field of dynamic Web

site creation is relatively new. It’s only

over the past few years that dynamic

sites have moved into the mainstream of

the industry, and the introduction of

Studio MX 2004 and Macromedia’s

embracing of “rich Internet applications”

only served to accelerate acceptance of

this discipline.

I didn’t try to do it by myself. My area

of specialization – how Studio MX tools

work together to provide a comprehen-

sive workflow solution – is already quite

large. Early in the game I made a con-

scious decision to understand how data-

bases and ColdFusion work and interact

with the tools in Studio MX. Still, rolling

up my sleeves, digging into the code, and

getting my arms “dirty” with electrons

was something I chose not to do. Ours is

an industry where teams of specialists

bring their unique skills to bear on the

task at hand. It is an industry where two

polar opposites – geeks and freaks – have

to learn to not only work intimately with

each other, but also to speak each other’s

unique language.

Designers, to coin a phrase from the

’60s, “the freaks,” simply can’t be expected

to be coders. They aren’t hardwired into

logic. Coders, “the geeks,” live in a

sequential and logical universe. This is

not to belittle or stereotype anyone. It is

simply describing how the two groups

think and approach the problem-solving

process.

If a freak wants to get a cup of coffee

he or she will point in the general direc-

tion of the café and say, “I am going over

there for a cup of coffee.”The geek will

map out the route with a focus on the

most efficient and logical method of

arriving at the café. In the dynamic way

of doing things, the most successful

organizations are those in which the

geeks and the freaks harmonize their

unique skill sets to meet clients’ needs.

This brings me to James Cullin –

James is a geek. I have known James for

more than a decade and, next to my

book’s coauthor Jordan Chilcott, he is

one of the best coders I have encoun-

tered. More important, like Jordan, James

understands the creative process inti-

mately.

James and I have worked together for

more than a decade teaching digital

media technologies at our college’s

school of media studies. Our two pro-

grams – interactive multimedia and

web design

Freaks and Geeks Unite

Getting dynamic requires designers and coders to work together
by tom green

t

PART 1

Internet management – complement

each other, and three years ago we came

to the conclusion that his Internet man-

agement students needed to know what

I do and that my multimedia students

needed to know what he does. This was-

n’t done for political or turf reasons. It

was more pragmatic than that. Our two

groups were graduating into an industry

in which they would eventually have to

work closely with each other, and it only

made sense that they learn how to com-

municate and work together before they

graduated.

Getting Out of the Box
When I discovered I had boxed myself

in with my new design, I started looking

at how to get out of the box. Over

Christmas, I came to the conclusion that

the only solution was to make the tutori-

als section dynamic. When I returned to

work in January of this year, I plunked

myself down in a chair in James’s office

and said, “I have a problem and need

your help to solve it.”

As is so typical of James, he listened

to my problem, asked a few very pointed

4 • 2004 MXDJ.COM • 49

im
a

g
e

 I

im
a

g
e

 I
I

50 • MXDJ.COM 4 • 2004

questions, whipped out a lined pad of

paper, and said, “Let’s get to work.”

At this stage of the process, there is

very little, if any, design work to be done.

The key issue is how to incorporate the

movement of dynamic data into a page

composed solely of <div> tags.

If you look at the structure of the

page in Dreamweaver MX 2004’s design

view, rolling over a <div> is indicated by

a red outline, as shown in Image III,

around the perimeter of the <div> area. If

you are used to creating pages with

tables, a <div> replaces either the table

or the cell of a table. This means, theoreti-

cally, a CSS-p page can actually be turned

into a Dreamweaver template. The <div>

tags can be placed in the Optional

regions of the template and the content

can flow into the editable regions of a

Dreamweaver MX 2004 template that are

commonly used in dynamic pages.

Though the theory is sound, I wanted

to be absolutely sure I could do this. I

went to Murray Summers, coauthor of

the definitive book on the use of tem-

plates in Dreamweaver MX, for a second

opinion. His response was rather interest-

ing: “I like it when I look at the page’s

source and all I see is <body>. This tells

me that I am either dealing with a rank

amateur, or an experienced master!” As

you can see, there is a razor-thin margin

for error in this project.

When James pulled out his lined pad,

he was assuming control of the first part

of the process: planning the data.

Planning the Data
This step involves a lot more than

simply pointing to a text area on a page

and saying. “Well, the text goes here.”

When planning the data you have to

“think like a computer” and create the

database in a logical manner. This is the

area where the geeks should take control.

Databases are not created on the fly.

They are carefully designed and planned

to meet both immediate and future

needs.

When planning the data consider

these points:

• Determine what is stored in the data-

base: To the freak it would be pictures

and text. To the geek text isn’t an

answer because, as

James put it to me,

“That’s great, Tom.

What kind of text

are we dealing

with here?” In the

case of the project

at hand the text

could be two

pieces of data – a

headline and a

brief description of

the tutorial’s con-

tents on the entry

page. In the actual tutorial page the

text is the tutorial’s write-up, headline,

image captions, and links to sites using

the technique.

• Determine what each piece of data

looks like: This is not a formatting

question. For example, the tutorial

description would be a “tinytext” field

in a database. The main narrative,

meanwhile, calls for the “longtext” data

type.

• Determine a model that meets your

needs: Again, this is not a design issue.

The model is the construction of the

database, which is a collection of the

fields that hold the data and the tables

that contain the fields. The tables in

the database will most likely contain

data that is related to other fields.

James and I spent a lot of time exam-

ining the various fields and tables that

we will need to create.

• Determine the relationships between

each table within the database: Take

the time to do this properly and you

can actually consolidate your data and

avoid repetition. For example, a tutori-

al’s headline could be used in both the

entry page and the tutorial page. This

means one headline has two uses and,

therefore, doesn’t need to be repro-

duced. Freaks tend to call this process

“getting organized” while geeks like

James insist on calling it “data normal-

ization.”

• Account for the present and the

future: James intuitively understood

the importance of this point. I had a

vague idea and he started to focus my

thinking around this one.

Situations change as data is added or

removed, and failure to consider this

point at the beginning of the process will

hand you a maintenance nightmare.

Tutorial sites have to be current. This

makes them “living pages” as new tutori-

als are added and old ones are removed

or udated to accommodate product

changes or industry best practice.

For example, when Macromedia

released FreeHand MX they included the

use of the Live Effects found in Fireworks

MX. A database planned to accommo-

date the future would be designed in

such a way as to easily allow us to add

this feature to a table that contains a list

of filters and effects in FreeHand MX. If

we didn’t accommodate this kind of

growth it would be difficult to graft

FreeHand MX Live Effects onto a model

that had them hardwired as fields in a

table.

Choosing the Database
Once James had an idea of the data,

the discussion then swung over to the

choice of database. This decision was eas-

ier to make than it first appears. Because

James was involved in the process from

the start, the choice of database was his

to make. From the freak point of view this

is a godsend. I have no problems dis-

cussing the nuances and fine details of

software, but when it comes to databas-

es, this is uncharted territory. As an expe-

rienced database developer James had a

personal preference, which in this case

was mySQL. The reasons for the choice,

apart from the fact that it’s free, were

that it is fast and stable, and can handle a

large amount of data.

By involving a geek like James right at

the start of the process I also avoided the

potential for error. The last thing you

need is to plan around a database and

then have to scrap the plan and any work

that went into it. If the database develop-

er is brought into the process after the

fact and discovers the data plan is incor-

rect or you are trying to “shoehorn” one

im
a

g
e

 I
II

technology into another, you’ll eventually

have to start all over again or resign your-

self to less-than-optimal performance.

The Data Dictionary
As James and I reviewed the plan his

notepad was becoming filled with impor-

tant points covered in our discussion. This

wasn’t because James wanted a written

record, but because he was going to

eventually have to construct a data dic-

tionary. This document is the data model

and is nothing more than a list of the

tables and fields used to store that data.

A data dictionary can be created

using a spreadsheet, an HTML table, or a

vector drawing tool like FreeHand. It

should contain the following headings:

• Field: This will be the field name in the

database. (Geeks often refer to fields as

columns.)

• Type: What type of data will be in the

field? Text? Time and date? Numeric?

(Geeks will sometimes use the phrase

“datatype” in this case.)

• Length: How large will the field be? If

it is a headline it doesn’t need to have

more than 100 characters. This area is

generally flexible and can usually be

changed at a later date if needed.

• Description: Which data is going into

the field, or how the field functions in

the table. This is not a technical

requirement for database design as

such. But you would be foolish not to

take the time to think your description

through. It’s helpful to think of the

description in the same way you think

4 • 2004 MXDJ.COM • 51

im
a

g
e

 I
V

im
a

g
e

 V

52 • MXDJ.COM 2 • 2004

xile written & illustrated by louis f. cuffari 5

about comment tags when creating a

Web template. The better you docu-

ment your work at the beginning, the

easier it is to collaborate with others

downstream.

This document can quickly be created

using the text, shape, and line tools of

FreeHand MX and then, using File>Export

can be saved as a PDF document for use

by members of the team. The other alter-

native, if you want to remain digital, is to

use Dreamweaver MX 2004’s Tables fea-

ture to create the data dictionary. This

page can then be posted to the group’s

work site (see Images IV and V).

The Back End
The next issue we dealt with was the

“back end.”This is how data gets entered

in to the database using a Dreamweaver

MX 2004 page. My need was succinct: “it

has to be simple.”

This has nothing to do with me and

everything to do with growth and use. Like

James, I was looking to the future. The plan

is to eventually open this section to stu-

dents and faculty. Thus the back end had

to be intuitive and flexible. It had to be

designed in a manner that allows content

to be quickly added, changed, or removed

without a steep learning curve. From a

design point of view, this feature, because

the visitor never sees it, has to stress func-

tionality and usability over aesthetics.

Data Types
The final piece of the data-planning

puzzle was defining exactly which data

types were needed. Based upon the cur-

rent design and the existing pages this was

fairly easy to identify. For the entry page

the data would consist of three fields. The

first is a unique identifier, called a primary

key, for each tutorial, which would be an

integer. A text field to hold the name of the

tutorial would also be required, as well as

another text field for the tutorial’s descrip-

tion. For the actual tutorial the data would

consist of fields holding the names of the

JPG images for the tutorial and fields for

the captions and tutorial write-up.

On the freak side of the equation, it

became pretty clear during James’ ques-

tioning that the page listing the tutorials

would have to change. It was not user

friendly, and a more accessible design

approach is needed.

For example, new tutorials are simply

tossed in at the bottom of the listing

area. This is not exactly a visitor-friendly

approach.

First, I’m making the visitor’s “job”terri-

bly difficult by forcing him or her to scroll

through the list looking for a particular tuto-

rial. On top of that, the tutorials aren’t identi-

fied by product. This means a student look-

ing for my color correction tutorial would

have to not only scroll through the list but

also read each description. This requires an

investment of time that I am sure not many

visitors are prepared to make.

The solution to this usability problem

involves categorizing the tutorials by MX

product. The visitor would select the

product – for example, Fireworks MX

2004 – from a list. That choice would then

initiate a “call" to the mySQL database

and build a list of all of the Fireworks MX

2004 tutorials that include this particular

categorization. In this manner, I can also

look to the future. As the numbers grow

they can easily be refined into subcate-

gories (e.g., Fireworks>Color

Correction>Using Levels), making the

design even more accessible.

From a design point of view this decision

opens up the page by reducing the amount

of content presented. It also becomes more

usable and functional, designed more to

meet the visitor’s need for information

access than my need for expediency.

Conclusion
As you have seen, converting a static

page to a dynamic page involves a lot

more than a designer pointing at an area

of the screen and saying, “Text goes here;

images go there.” Involving a database

and/or ColdFusion pro right at the start of

the process will keep the project moving

in a straight line toward success. These

geeks, as I call them, are now an integral

members of the Web development team

and, rather than being regarded as adver-

saries, they are now collaborators.

Making a site dynamic is a complicat-

ed process, and where the designer

(freak) sees an image, the geek sees

something even more important. He or

she sees data, which is the raw material

for dynamic site development.

Stay Tuned
With the planning process complete,

it’s time to go to work. James will handle

the task of bringing order to my chaos,

and I will learn that making a CSS-p page

dynamic is harder than it seems. We’ll

document that process in Part 2.

Teacher, author, lecturer,

chief cook and bottle

washer. and Instructor at

Humber College’s School

of Media Studies in

Toronto, Tom Green is also

the author of Building Web

Sites with Macromedia

Studio MX and Building

Dynamic Web Sites with

Macromedia Studio MX

2004. Both are published

by New Riders.

tgreen17@cogeco.ca

The course coordinator

and “Lead Geek” for the

Internet management and

Interactive Multimedia

programs through the

School of Media Studies

at Humber College in

Toronto, James Cullin

currently teaches courses

in Internet technology

and Web programming.

4 • 2004 MXDJ.COM • 53
©COPYRIGHT 2004 SYS-CON MEDIA. ALL BRAND AND PRODUCT NAMES ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

for more information visit
www.ISSJournal.com

From the World’s Leading i-Technology Publisher

Information
Storage+Security

Journal!

previewing may 11, 2004, at networld+interop, las vegas

T
Integrating Flash MX 2004

 and ColdFusion MX 6.1
 with Web Servicesby curtis p. hermann

his is a very good time to be a Web

application developer. Over the years we

have moved from complex and proprietary

methods of sharing data, to a more

standardized and easy-to-implement

method of exchanging simple or complex

objects over the Web.

 Though nothing is perfect, data transfer

via Web services is much more standardized

and has been made more simple than

anything we have had in the past. Web

services allow us to not only share data but

to share complex data. With Web services

you can send and receive objects that range

from simple numbers to record sets.

54 • MXDJ.COM 4 • 2004

4 • 2004 MXDJ.COM • 55

56 • MXDJ.COM 4 • 2004

This is accomplished by defining

interfaces and by passing data back and

forth in XML format. Both ends of the

communication pipe know how to trans-

late the XML to native objects, like a

String or Array. Since the data is defined

with XML, it is platform independent. As

long as this data adheres to the shared

standard, multiple applications can com-

municate and know nothing about the

other’s technology. This is a very powerful

distributed computing world that has

existed since the inception of the World

Wide Web. You cannot only share data

between different components of one

application, but can make it available for

others to grab, like the latest-breaking

news from your Web site or stock quotes.

The standard used in the technolo-

gies discussed within this article is a pro-

tocol called Simple Object Access

Protocol (SOAP). SOAP has taken the lead

in messaging standards. Furthermore,

Macromedia, along with other technolo-

gy giants like IBM, Microsoft .NET, and

others, has decided to adopt SOAP with

the new set of data components and

Web services classes.

What About Flash
Remoting?

What we will be looking at in this arti-

cle are Data Components and

WebServices classes, but there is another

technology that Macromedia produces

called Flash Remoting. The WebServices

classes are much like Flash Remoting in

that they act as the mechanism to trans-

port data between applications without

requiring that the developer knows how

it is done. WebServices classes are based

around SOAP whereas Flash Remoting is

a proprietary technology. Those who

already know about Flash Remoting

might be asking the question, “Are the

ActionScript Web Services classes replac-

ing Flash Remoting?”The answer is no.

Macromedia has just been focusing on

SOAP-based Web services to meet the

needs of the community. Since they

already had Flash Remoting up and run-

ning, internal development efforts have

been concentrated on SOAP-based initia-

tives.

For those of you who don’t know

much about Flash Remoting, it is a tech-

nology that is used in the same way as

SOAP Web services, but is proprietary to

Flash MX+ applications. Flash Remoting is

a Macromedia technology, whereas SOAP

is an open standard. One advantage that

Flash Remoting has over SOAP, is that it is

sent in binary format so that it is much

more efficient and “lighter weight.” SOAP,

on the other hand, is very verbose in its

object descriptions and can be much

slower than Flash Remoting when return-

ing large results; this is because SOAP is

based on passing XML strings between

machines. A disadvantage of Flash

Remoting is that it is not free – kind of.

You either need to purchase it for your

server (for “pure” Java or .NET), or be run-

ning on a ColdFusion MX+ or JRun 4+

platform. Also, at the time of this writing,

Flash Remoting is still written in

ActionScript 1.0 while the Web service

classes and data components in Flash MX

2004 are written in ActionScript 2.0. So, if

you are into developing strictly

ActionScript 2.0 applications, and you

use Flash Remoting, you will need to still

use ActionScript 1.0 syntax to include the

libraries into your application. However,

Macromedia promises that a new version

written in ActionScript 2.0 is coming

soon. I look forward to this release. I

myself have written many applications

using Flash Remoting and enjoy the tech-

nology very much and encourage others

to explore and work with it as well.

Web Services, Flash MX
2004 and ColdFusion MX
6.1

The problem we are trying to solve

with these technologies is how to push

data between applications that don’t

speak the same language and use the

Web as their vehicle. In versions of Flash

prior to Flash MX, developers would use

the LoadVars method, URL rewriting, and

manually parsing XML files. These meth-

ods work, but are either too limiting in

the data they pass or require too much

knowledge about how the data is struc-

tured (they are not suited to the transfer

of compex data). In the case of using Web

services, Flash can send ColdFusion an

object that was constructed in

ActionScript (represented as XML), and

when ColdFusion receives it, the

ColdFusion Application Server translates

the XML into a native variable and uses

that object as a ColdFusion Struct.

The same happens in reverse. Flash

knows nothing about ColdFusion CFML

and ColdFusion knows nothing about

Flash ActionScript, but they do share a

common language – SOAP – and it’s a

beautiful thing. The same holds true for

Java, PHP, Visual Basic, and other pro-

gramming languages.

What We Are Going to Do
To illustrate how this communication

works, I have chosen a user login screen

to be the example. This is something we

all deal with, so I figured I would not have

to explain the application purpose and

we could just focus on the Web service

communication. This is not how you

im
a

g
e

 I
im

a
g

e
 I

I

4 • 2004 MXDJ.COM • 57

would do user authentication in the real

world. For instance, the example does

not do any user input validation and

obviously you would want to build the

application to authenticate from a

dynamic data source rather than just a

hard-coded example as you will see.

In our sample application ColdFusion

is going to be the technology used to

publish the Web service that supplies

Flash with data from the server. Flash is

going to make calls to the ColdFusion

server to get that data, and will pass any

data that the server requires for its meth-

ods. SOAP is going to be the vehicle for

the data to ride on, between the two.

In a nutshell, the user will type in a

username and password, then click the

login button. At this point Flash will pass

the two arguments to ColdFusion in the

form of a SOAP request. ColdFusion will

take that SOAP XML and translate the

two arguments to a string type that

ColdFusion can understand. ColdFusion

will then evaluate the username and

password and return a valid or invalid

string value back to Flash in a SOAP

Response. Flash then receives that XML

data structure, converts it to a String

object it can understand, and displays

the result to the user. That's it!

The last thing to discuss before we go

into the project, is that Flash MX 2004

interacts with Web services in two ways.

First, it uses design time graphical com-

ponents to set the properties in the IDE

rather than in code. You can actually

develop applications without typing a

line of code. Second, it uses the Web

service classes and does not rely on the

graphical components. We will examine

both in this article.

The Web Service
By far, ColdFusion MX is the simplest

way to create a Web service. ColdFusion

MX does this through CFCs (ColdFusion

Components). You can think of a CFC as a

Web accessible class. Like classes in other

languages such as ActionScript and Java,

a CFC has methods and properties. CFCs

are saved in a file with a .cfc extension

and the file location and name deter-

mines the class and package names.

Let’s take a look at the basics of a CFC:

<CFCOMPONENT>

This is the root tag that will encapsu-

im
a

g
e

 I
II

im
a

g
e

 I
V

im
a

g
e

 V
im

a
g

e
 V

I

58 • MXDJ.COM 4 • 2004

late all of the supporting code. There are

no required attributes, but it can take two

optional attributes HINT and DISPLAY-

NAME. These attributes are used to docu-

ment the component, which tools like

Dreamweaver MX 2004 take advantage

of.

<CFFUNCTION>

All of your methods will be written

within the <CFFUNCTION> tag. The attrib-

ute NAME is the only required attribute,

but when developing Web services you

will always need to set the ACCESS attrib-

ute to “Remote”; otherwise ColdFusion MX

server will not make it accessible to Flash

as well as specifying the RETURNTYPE of

the method. The RETURNTYPE attribute is

an attribute that you will get accustomed

to very quickly. The RETURNTYPE must be

set when treating the CFC as a

WebService, even if the method does not

return anything; then set the returnType

attribute to void. This attribute sets what

type of object is allowed to be returned,

such as a struct, date, string, etc. The

ROLES attribute is used to set a security

level on who is allowed to access this

method. The OUTPUT attribute deter-

mines whether or not the method can

produce output, like the <CFOUTPUT>

tag, but when developing for WebServices

this should be set to “no”. Once again,

HINT and DISPLAYNAME are optional and

should be used to help document your

component at the method level.

<CFARGUMENT>

The <CFARGUMENT> tag is used with-

in the <CFFUNCTION> tag to define the

arguments taken by the method. <CFAR-

GUMENT> requires that the NAME attrib-

ute be defined; this gives a readable iden-

tifier to the argument like “username” or

“id”. The TYPE attribute is required for

WebServices. The REQUIRED attribute

takes a Boolean value to set whether or

not this argument must be passed. But

when developing CFCs for Web services,

the attribute required=“false” is ignored,

all arguments are required, and the

DEFAULT attribute is not used. As always,

HINT and DISPLAYNAME are optional and

should be used to help document your

component at the argument level.

For more information on publishing

CFCs as Web services check out:

http://livedocs.macromedia.com/coldfu

sion/6/Developing_ColdFusion_MX_Appl

ications_with_CFML/webservices5.htm

LoginManager.cfc
In this article I am using a login page

as an example of integrating ColdFusion

MX and Flash MX 2004 through Web

services. To make the login happen I

need a component that will accept a

username and password, then return a

success if they are good, or a failure if

they’re not.

Setting Up the Application
Under ColdFusion MX

For this article I set up a directory

structure under my ColdFusion MX web-

root as follows: [coldfusion web

root]/mxdj/ws/

Then I saved a file named

LoginManager.cfc in the ws directory: [cold-

fusion web root]/mxdj/ws/LoginManager.cfc

Open this file in your favorite editor (I

use Dreamweaver MX 2004) and place

the following code.

First start with the component definition:

<cfcomponent>

</cfcomponent>

Second, define the method to login:

<cfcomponent>

<cffunction name="login"

access="remote" returntype="string">

</cffunction>

</cfcomponent>

Note: The access attribute is set to

remote; if you do not set this attribute

correctly the component will not be

accessible to Flash.

im
a

g
e

 V
II

I

im
a

g
e

 I
X

im
a

g
e

 X

im
a

g
e

 V
II

4 • 2004 MXDJ.COM • 59

Coming this SPRING!

LOOK FOR YOUR FREE...

© 2004 SYS-CON MEDIA. ALL RIGHT RESERVED. ALL BRAND AND PRODUCT NAMES USED ARE TRADE NAMES, SERVICE MARKS, OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

WWW.SYS-CON.COM/IT

>Linux >Java >Web Services >.NET >XML >Wireless >Storage >Security

How to
Manage
Your Ideas
UsingToday’s

i-Technologies

The Premier Resource for Today’s Corporate & IT Decision Makers

0
0928

1 0112
1 7

1 2
$5.9

9US
$7.9

9CAN

VOL 1 ISSUE 1 SPRING 2004

>> Delivering

Software

as Service

>> Leveraging
Linux/Open Source

>> Moving to a

Service-Oriented

Architecture

>> Desktop Software:

Migrating from

Server to Client

>> Using
Developer Tools

to Drive Cost Out

of Software

>> Application
Integration

>> Storage &
Security

TECHNOLOGIES

YOU NEED

NOW!

Reach
in

g 1
35,0

00

Cor
por

ate
 an

d I
T D

eci
sio

n M
ake

rs

Third, define the arguments needed

to log in:

<cfcomponent>

<cffunction name="login"

access="remote" returntype="string">

<cfargument name="username"

type="string" required="true">

<cfargument name="password"

type="string" required="true">

</cffunction>

</cfcomponent>

Finally, write the code to verify the

username and password, as well as return

the result of that evaluation.

<cfcomponent>

<cffunction name="login"

access="remote" returntype="string">

<cfargument name="username"

type="string" required="true">

<cfargument name="password"

type="string" required="true">

<cfif username eq "curtis" and pass-

word eq "letmein">

<cfreturn "good login!">

<cfelse>

<cfreturn "bad login">

</cfif>

</cffunction>

</cfcomponent>

Obviously, this is just a quick example

of a login method that is not very realis-

tic. A real login method would be con-

necting to a database and not using

hard-coded values as this one does.

That’s about all it takes to create a

component. Go ahead and test it out by

accessing the component in your Web

browser with the following URL (replace

the localhost:8500 with the URL and port

to your ColdFusion MX server):

http://localhost:8500/mxdj/ws/LoginMan

ager.cfc?method=login&username=cur

tis&password=letmein

You should see a result like the one in

Image 1.

Now, produce a bad login by chang-

ing the arguments to an invalid user-

name and password:

http://localhost:8500/mxdj/ws/LoginMan

ager.cfc?method=login&username=black

beard&password=yellowdog

You should see a result like the one in

Image 2.

Now that we have our component

working, let’s turn it into a SOAP Web

service that can be used by the new data

components in Flash MX 2004. Well, there

is not really anything to do, except

change the way we access it. By adding

?wsdl to the end of the URL to access a

component tells ColdFusion MX that we

want our communication with that com-

ponent to be SOAP based. To look at

what our CFC looks like using SOAP type,

see the following URL: http://local

host:8500/mxdj/ws/LoginManager.cfc?ws

dl.

WSDL (Web Services Description

Language) is an XML format for describ-

ing Web services. It defines what meth-

ods (or operations) are available, what

parameters the method will take, and

what the method returns.

The result should look like Image 3.

Note: If your browser appears to be

blank, view the document source. Some

browsers do not display WSDL.

This is how WSDL describes the

LoginManager CFC, so that when other

SOAP-aware applications attempt to use

this service, they know how the objects

are defined.

The Flash Front End
When using Flash MX 2004 data com-

ponents, you can either set them up

through the IDE by dragging and drop-

ping data components onto the stage

and binding them to the data graphically

using the component inspector or by

hand coding the connection. I will start

with the first option, then show an exam-

ple of coding everything by hand. Some

familiarity with Flash is assumed.

The Interface
1. Create a new Flash Form Application

and save it as Login.fla

2. Rename form1 as login_frm

3. From the components panel under the

UI Components node, use TextInput

components to create two input fields

named “username_inpt” and “pass-

word_inpt”. For the second TextInput

component, password_inpt, set the

password value to true in the

Properties panel. Add a Button, call it

“login_btn” and change the label to

“login”. Then add a Label component,

60 • MXDJ.COM 4 • 2004

im
a

g
e

 X
II

I

im
a

g
e

 X
IV

im
a

g
e

 X
I

im
a

g
e

 X
II

name it “results_lbl”, and change the

label property to “login results”. Finally,

finish the interface by adding the

appropriate labels and text fields to

make login_frm look like Image 4.

Now that the interface is in place we can

focus on getting data into it.

Web Services Panel
A great way to inspect available com-

ponents is to view them through the

Web Services Panel, which can be

accessed via the menu in Flash MX 2004

under Window-Development Panels-Web

Services (see Image 5).

To add a Web service, click the globe

icon in the upper left hand corner of the

panel. A Define Web Services dialog will

open. We want to view the

LoginManager service so click the plus

icon to add a service, then enter the URL

to the service and tack ?wsdl to the end

(http://localhost:8500/mxdj/ws/LoginMa

nager.cfc?wsdl; see Image 6).

Press the “OK” button. Now your Web

services panel will display the newly

added service. In this panel, services are

displayed in a tree so that you can drill

down to its method and that method’s

arguments and results. Expand each level

of the LoginManager service so that you

can see the Login method, its arguments,

and results (see Image 7).

The WebServiceComponent
To make calls to Web services we

need to add a WebServiceConnector

component to our application. This com-

ponent can be found in the components

panel under the Data Components node.

There are two properties that need to be

assigned to use this component: WSD-

LURL would be the URL to

LoginManager.cfc and operation, which

would be the method (login) you want to

call. This component can be used by

dragging the object from the

Components panel to the stage and

assigning those values, or you can right-

click the method login in the Web

Services panel and select Add Method

Call from the popup menu (see Image 8).

This will add the component to the stage

and fill out the appropriate values need-

ed.

Once the component is on the stage

go ahead and move it off the viewable

area. It is not seen at runtime, so wherev-

er you place it on the screen is just a mat-

ter of organizational preference (see

Image 9).

Select the WebServiceConnector

component and name it to login_wsc.

Also, verify that the WSDLURL and opera-

tion property is correct (see Image 10).

Binding
As you know already by writing the

LoginManager CFC, the login method

requires two arguments: username and

password. It also returns a result string.

How these values get set is through the

username_input and password_input

TextInput components. The result is dis-

played by the results_lbl Label compo-

nent. The quickest and easiest way to do

this is to set the connection between

these components and the login_wsc

WebServiceConnector through the bind-

ings tab in the Component Inspector

panel.

To bind the arguments to the

TextInput components, select login_wsc

then click on the bindings tab in the

Component Inspector tab. Click the plus

icon to add a parameter binding (see

Image 11).

An Add Bindings dialog will open dis-

playing the possible arguments and

results that can be bound (see Image 12).

Select the username argument and

press the OK button. Back in the

Component Inspector panel, under the

Bindings tab, you will now see the user-

name argument in the Bindings list. With

the username binding selected, click in

the bound to property field to bind the

username argument to the

username_inpt TextInput component.

Within the Component Path tree lays the

login_frm and all of its components.

Select the <TextInput> username_inpt

node then click OK (see Image 13).

The component is now bound to the

username argument. Notice that the

direction property is equal to “in”. When a

user types in a username, that value will

be bound to the username argument

and passed to the login method. Repeat

the same process to bind the password

argument to the password_inpt

TextInput component. When passing val-

ues to the WebServiceConnector, the

direction value will be “in”, but when

receiving values from a

4 • 2004 MXDJ.COM • 61

im
a

g
e

 X
V

im
a

g
e

 X
V

I
im

a
g

e
 X

V
II

im
a

g
e

 X
V

II
I

im
a

g
e

 X
V

II
I

62 • MXDJ.COM 4 • 2004

WebServiceConnector the

will be “out”. You will now see how the

“out” direction works with the next step.

At this point you are able to pass

arguments to the WebServiceConnector,

but are not able to receive the result. To

do this, click the plus icon on the Bindings

tab the same way you added the argu-

ments. This time select the results node

and click OK. In the Component Inspector,

under the Bindings tab, you should now

have three items that are bound: user-

name, password, and results. To complete

the binding of the results, click in the

bound to property field, then drill down

to the Label <results_lbl> node in the

Bound To dialog, finally clicking OK. Your

Component Inspector panel should now

look like Image 14.

Okay, now our interface is bound to

data! All we have to do now is trigger the

data source. To continue down the path

of NO CODING, we will trigger the data

source using the new Flash MX 2004

behaviors. To do this, select the login_btn

on the stage, then open the Behaviors

panel, accessed via the main menu-

Window-Development Panels-Behaviors

(see Image 15).

To add a behavior, click the plus icon,

then navigate the menu Data-Trigger

Data Source (see Image 16).

The Trigger Data Source dialog will

open. Drill down the tree and select

login_wsc, then click OK (see Image 17).

To see what has happened, select the

login_btn Button component and open

the actions panel. As you can see in

Image 18, code has been generated for

you to trigger the login_wsc

WebServiceComponent.

So, now we are bound and triggered

and ready to log in. Test your application

and enter in a username and password. If

you want to have a successful login enter

“curtis” for the username and “letmein” for

the password. If the username and pass-

word are correct, then the results_lbl will

display “good login!” (see Image 19).

Otherwise, a bad login will result in “bad

login”.

This has been a simple example of

how the WebServiceConnector compo-

nent and a ColdFusion CFC can work

together. Through the use of the

Component Inspector, you can bind data

to other components without one line of

code. It’s fun to throw together a quick

application or prototype using these

tools. However, you can soon find your-

self limited by this way of application

development and find yourself deep in

code to solve the problem.

Coding the Web Services
Classes

Rather than using the Component

Inspector or Properties panels, I am cod-

ing 99.9% of the time. Mostly, I use the

Flash interface to lay out and organize my

forms and components, then I pour

ActionScript into the application in exter-

nal class files. One of the problems of

developing applications with design time

tools is that when it comes to runtime,

they cannot be dynamically

changed without the use of

code. Often, developers need

this flexibility. Also, while stor-

ing properties in design time

components, you can have a

real hard time tracking down

problems as the application

becomes very large. It is

much easier to dig through

code than through multiple

levels of movie clips, selecting

them to find their properties.

With coding in external files,

you have the power of search

and replace and diff tools, that compare

the differences between versions of

source code, not to mention versioning.

As much as these design time tools open

the world of application development to

many people who do not have developer

experience, they do have boundaries as

to what they allow the developer to do.

Ultimately, you need to perform logic

and code reuse. To date I have not seen a

complete solution that is entirely visual in

nature. They serve a good purpose by

allowing beginning developers to

become wrapped around advanced tech-

nologies fast, so that they can under-

stand what the code is doing when they

get there.

So let’s get started on creating a

coded version of the Login application.

The easiest and quickest way to get

things going is to save a copy of the

Login.fla as Login2.fla. Next, delete the

login_wsc WebServiceConector compo-

nent from the stage and delete the

WebServiceConector component from

your library. Finally, select the login_btn

Button component on the stage and

delete the click behavior from the

Behaviors panel. Now we are ready to set

up our application with code.

We are going to need a class for the

login_frm Form. Classes in ActionScript

2.0 are defined in their own file with the

.as extension. Let’s begin by creating a

new class from within the Flash MX 2004

development environment. From the

main menu select File-New. A New

Document dialog will open. Make sure

the General tab is selected, then choose

the ActionScript File option from the list

and click OK (see Image 20).

Save the new file as LoginForm.as in

the same directory as the Login2.fla.

Make sure to pay attention to how you

name and reference files, ActionScript 2.0

is case sensitive no matter what platform

you are developing on. Many articles and

online tutorials are written on

ActionScript 2.0, so I will not go into it

here. But, if you want to read a good one,

check out the Ramping up on

ActionScript 2.0 and Flash MX 2004 in the

January 2004 edition of ColdFusion

Developer’s Journal (www.sys-

con.com/coldfusion/). Let’s write our

class.

First the class definition. Since we will

be associating this class with login_frm

im
a

g
e

 X
X

I

im
a

g
e

 X
X

4 • 2004 MXDJ.COM • 63

Form, we will need to extend the Form

class:

class LoginForm extends

mx.screens.Form {

function LoginForm() {

}

}

Save the LogForm.as file then go back

to the design environment to associate

the LoginForm class with login_frm. To

do this, select login_frm in the form hier-

archy pane and select the properties tab

in the Properties panel. In the class name

field, replace mx.screens.Form with

LoginForm (see Image 21).

Now when an instance of login_frm is

created, so will an instance of LoginForm

class. Before we go back to coding we

need to get the Web services classes into

our application. You can access these

classes from the main menu by naviga-

tion Window-Other Panels-Common

Libraries-Classes (see Image 22).

In the libraries panel you will see a

library with the heading Classes.fla.

Within Classes.fla there are

DataBindingClasses, UtilsClasses, and

WebServicesClasses. Now, we will deal

with WebServicesClasses. Drag the

WebServicesClasses icon to the stage so

that it is in the Login2 library. Then delete

the object from the stage.

Back in our LoginForm.as file, we

need to import the services that we just

added to our file.

import mx.services.*;

class LoginForm extends

mx.screens.Form {

function LoginForm() {

}

}

Then we need to define a variable to

hold a reference to our login_btn Button

component and add a listener for the

click event. Also, define references to the

TextInput and Label components:

import mx.services.*;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.TextInput;

class LoginForm extends

mx.screens.Form {

private var login_btn:Button;

private var results_lbl:Label;

private var username_inpt:TextInput;

private var password_inpt:TextInput;

function LoginForm() {

}

function onLoad() {

var obj = this;

var loginBtnListener = new Object();

loginBtnListener.click =

function(evnt) {

}

login_btn.addEventListener("click",

loginBtnListener);

}

}

When the login_btn Button is clicked

then we should make a call to our Web

service. So, within the click event for

login_btn we will set up a service and

make a call.

loginBtnListener.click =

function(evnt) {

var loginService:WebService = new

WebService("http://water.local:8101/cf

usion/mxdj/ws/LoginManager.cfc?wsdl");

}

Next, make the call. Also, assign an

object to that call to listen for the result

and fault events.

var loginCall:PendingCall =

loginService.login(obj.username_inpt.t

ext, obj.password_inpt.text);

loginCall.onResult =

function(result) {

obj.results_lbl.text = result;

}

loginCall.onFault = function(fault)

{

obj.results_lbl.text = "An Error

Occurred"

trace(fault.faultCode + " : " +

fault.faultString);

}

Finally, your completed LoginForm

class should look like this:

import mx.services.*;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.TextInput;

class LoginForm extends

mx.screens.Form {

private var login_btn:Button;

private var results_lbl:Label;

private var username_inpt:TextInput;

private var password_inpt:TextInput;

function LoginForm() {

}

function onLoad() {

var obj = this;

var loginBtnListener = new Object();

loginBtnListener.click =

function(evnt) {

var loginService:WebService = new

WebService("http://water.local:8101/cf

usion/mxdj/ws/LoginManager.cfc?wsdl");

var loginCall:PendingCall =

loginService.login(obj.username_inpt.t

ext, obj.password_inpt.text);

// onResult is called when all goes

well

loginCall.onResult =

function(result) {

// display whether the user is

valid or not

obj.results_lbl.text = result;

}

// an error occurred while trying

to make the Web Service call

loginCall.onFault = function(fault)

{

trace(fault.faultCode + " : " +

fault.faultString);

}

}

im
a

g
e

 X
X

II

64 • MXDJ.COM 4 • 2004

login_btn.addEventListener("click",

loginBtnListener);

}

}

Debugging
No matter how good of a developer

you are, bugs occur. When they do, you

will need to find out what is going on.

Flash MX 2004, has a built-in graphical

debugger you can use with your applica-

tion development. With Web services,

there are a couple of objects that you can

take advantage of to help you track

down errors.

PendingCall Class
If you want to see what is actually

being sent and received you can use the

PendingCall class to view the actual

SOAP that is being produced and parsed.

The PendingCall object we would use in

this class would be the variable loginCall.

To view the SOAP being sent, trace the

loginCall.request property and to see the

SOAP being returned, trace the

loginCall.response property.

For example, in the loginCall.onResult

event I trace the loginCall.response prop-

erty. The following is what is in the out-

put:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xml-

soap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLS

chema"

xmlns:xsi="http://www.w3.org/2001/XMLS

chema-instance">

<soapenv:Body><ns1:loginResponse

soapenv:encodingStyle="http://schemas.

xmlsoap.org/soap/encoding/"

xmlns:ns1="http://ws.mxdj">

<ns1:loginReturn

xsi:type="xsd:string">good

login!</ns1:loginReturn>

</ns1:loginResponse>

</soapenv:Body>

</soapenv:Envelope>

SoapCall Class
The SoapCall class is created for

each operation in the Web service. This

object acts as a description of the call

and allows you to customize that partic-

ular call delaying the conversion of

SOAP objects to ActionScript. As far as

debugging goes, you can loop through

the SoapCall class and view the proper-

ties of the SoapCall and their values.

Access the SoapCall by getting a refer-

ence to the PendingCall.myCall proper-

ty.

Change the loginCall.onResult event han-

dler to this:

loginCall.onResult = function(result)

{

var sCall:SOAPCall =

loginCall.myCall;

for(var i in sCall) {

trace("loginCall.myCall." + i + "

= " + sCall[i]);

}

obj.results_lbl.text = result;

}

Log Class
The Log Class tracks each step that

has taken place during the communica-

tion process. You might expect a file to

be produced, like most logging features

in software development. In fact, the

Log class will send text just to the

onLog event. The Log class has three

logLevels:

• Log.BRIEF: The log

records primary life-

cycle event and error

notifications.

• Log.VERBOSE: The log

records all life-cycle

event and error notifi-

cations.

• Log.DEBUG: The log

records metrics and

fine-grained events

and errors.

In this example we will use the VER-

BOSE level.

By adding the following code we can

track what is going on during our Web

service method invocation:

Insert this code right above the

loginService declaration:

var loginLog:Log = new Log(Log.VER-

BOSE);

loginLog.onLog = function(log_str) {

trace(log_str);

}

Change the loginService declaration

by adding an additional parameter con-

taining the loginLog:

var loginService:WebService = new

WebService("http://water.local:8101/cf

usion/mxdj/ws/LoginManager.cfc?wsdl",

loginLog);

Now run the application and log in

again. You will see output from the log

object in the Output panel (see Image

23).

As you can see there are many ways

to debug your application, so you won’t

be left out in the cold.

Wrapping Up
We have covered a lot of information

here, but this is only the very beginning.

There are many features with the

WebServices classes and Data

Components that I have not come even

close to touching on, but this will get

developers started and exploring on their

own. Web services are definitely here to

stay, so as a professional in this field I

advise you to study them and master

their use.

Would you prefer to use the LoadVars

technology of yesteryear? I think not.

Coming from years of transferring data

through URL rewriting, HTML form ele-

ments, and manually parsing XML docu-

ments, I am pretty set on not going back

to that – and recent trends show that the

industry agrees. Having the ability to

work with objects, and not caring how

they got to the server and came back to

me, is a good thing. With integrating

technologies such as ColdFusion MX and

Flash MX 2004, data should be smooth

and trouble free.

im
a

g
e

 X
X

II
I

Curtis P. Hermann

is a Macromedia

Certified Flash MX

Developer. He

owns and operates

a small consulting

firm, iindwell, inc.

(www.iindwell.com).

He also heads the

Flash MX develop-

ment and quality-

assurance depart-

ment for

WisdomTools.com

(www.wisdom-

tools.com).

curtis@iindwell.com

4 • 2004 MXDJ.COM • 65

rom the people that brought you

the V12 Database Engine and PDF

Xtra comes Impressario: an Xtra

for the manipulation of PDF docu-

ments. OK, so it's true that PDF Xtra

already provides navigation and zooming

features to Director, but Impressario is

PDF Xtra Pro. It enables you to use PDF

documents in ways that, quite frankly, are

really impressive.

For the purposes of this review I

downloaded the trial version that

requires you to have a serial number e-

mailed to you. It comes as an installer

that, puzzled me at first, as I know where

my Xtras folder lives. But I soon discov-

ered that the installer also adds a library

of button assets and another of behav-

iors to assist your journey and, having

had a quick peek at the code in the

behaviors, I’m very glad they did.

The behaviors aren’t the easiest for

those unfamiliar with PDFs, but they

don’t need to be. Not only do you have

most of the essential behaviors in a

library anyway, there are also a few exam-

ples on the site to help you get your

head around it. Impressario Xtra is rich in

accessibility features aimed at creating

projects for the motor and visually

impaired. It has the ability to extract text

from a PDF document and throw it at the

Speech to Text Xtra, as well as the kind of

functionality you would expect, such as

zoom and page navigation. It offers a lot

of other helpful features too, including

support for PDF forms, embedded hyper-

links (but not many other embedded

actions), the ability to open password-

66 • MXDJ.COM

product

Integration New Media’s Impressario
Xtra for Director

New use for an old friend
reviewed by alec east

f

Info
Company:

Integration New Media, Inc.

1425 West René-Levesque Blvd.,

Suite 906

Montreal, Quebec

H3G 1T7

Canada

1(800) 400-1772

http://www.Integration

NewMedia.com/

Test Environment:
Software: Director MX 9.0

Processor: G5 1.8Ghz,

Memory: 1.5 Gig Ram,

OS: Mac OSX 10.2.8

Price:
$439 U.S.

Alec East is the media

director at Tomorrow

London (www.tomor

rowlondon.com).

alec@tomorrowlon

don.com

protected documents, and, at the drag

and drop of a behavior, the ability to pro-

vide word search on a document without

leaving the Director MX environment.

As Director MX refuses to even look at a

PDF document unaided, Integration’s

Impressario from Integration New Media

(INM) adds a menu item to the “Insert”

menu that allows you to link to a PDF as you

would an MPEG video with the mpegad-

vance Xtra. Simply browse for the file, add a

password if necessary, and voila. Once in the

cast, you can add multiple PDFs to the stage

and target them independently. It is entirely

self-contained and doesn’t even need

Acrobat installed to work.

In a shrewd marketing move, INM has

provided a selection of “open source”

tools and files for download, including a

complete, Acrobat-

style MIAW PDF

reader for the

unashamedly lazy. If

you can’t find what

you need in the

libraries that come

with the Xtra,

chances are that it

will be in one of the

online examples. A

small selection of generic toolbars and

buttons is also available that appears to

have been carefully crafted to be totally

inoffensive. I hated them the moment I

set eyes on them. The free buttons are

more insipid than ugly, but I can’t deny

that they do speed the process from con-

cept to delivery and, when combined

with the pre-rolled behaviors, you can be

throwing your PDFs about in no time.

If, for example, you want to personal-

ize PDF documents for individuals, you

can use Impressario’s PDF forms support

and its “save” feature to write a PDF docu-

ment to a local drive with the completed

form data in place – instant personaliza-

tion. This could be useful for creating con-

tracts, personalized sales tools for compa-

nies, and a host of other applications.

There is a dark side to all this, though.

Unless you are willing to pay a surcharge,

the licensing agreement states that you

must make a small sacrifice to the sacred

Lord Logo and wear his symbol at all

times. But as Director and Quicktime

have this caveat too, there's no great loss

in waving the “Enhanced By INM’s

Impressario” flag on your project.

Summary
I played with Impressario for a little

while and liked it. I zoomed, scrolled,

printed, and searched a few PDF docu-

ments and found it fast, solid, and simple

to use. It is available for both Mac and PC,

which particularly endears it to me, as I

tend to spend a lot of time on Macs too.

But, and it's a big but, it’s a very special-

ized Xtra and that is reflected in the cost. I

would have to think long and hard about

whether the job really required these fea-

tures or if there were a more economical

solution (a mixture of Flash and XML

would provide many of the accessibility

features) before I bit the $439 U.S. bullet

for a one-time license that allows me to

use the product on as many projects as I

want. An educational license is available

for $299 U.S. Integration New Media does

offer a discount to MMUG members (con-

tact your preferred one for details), but

even so it’s quite a price to add to your

already-stretched budget, unless, of

course, it adds an essential value to your

project.

MXDJ.COM • 67

by tab julius

68 • MXDJ.COM 4 • 2004

ised I promisedI promis d

ato take you to see a

y, one where you wereforeign city, onforeign city, ne where yo

uent in the language, and didnnot fluent and didn’t know yourt know your

ay around, and then actually flew you there to visit, would youway aroy around, and then actually flew you

want me to just drop you off in the center of town and leave you there?e center of town and leave you thereant me to

ififfiiiiif

4 • 2004 MXDJ.COM • 69

70 • MXDJ.COM 4 • 2004

Well, that’s sort of what has hap-

pened in my last two articles on Xtras

(MXDJ, Vol. 2, issues 2–3) – space consid-

erations precluded us from doing every-

thing at once.

In my last article, I got you to the city.

We went through the steps of building

an Xtra and got it so that you could issue

a Lingo command that would invoke a

“Hello, World” alert box generated from

within the Xtra.

And there we left it. No time to dis-

cuss what happens next, no time to talk

about how to get data in or out of

Director, no discussion of what powers

you have access to. I just left you in the

city and drove away.

Now we’re going to rectify some of

that. You’ve made it to MOA

(Macromedia Open Architecture) City.

What now?

Structure
The first thing we need to do is to get

oriented. Before we can be productive,

we have a few basic chores to do.

All of MOA is organized into classes. It

is very COM-like. If you need a particular

function, you first have to get a

pointer to the interface for the

class that it exists in, and

from there you can

call the

function you want. The most common

interfaces are typically acquired up front,

during create time, and released at the

end; then you just keep the pointers

around and use them as needed.

The classes I most commonly acquire

in advance are:

• IMoaDrPlayer: A pointer to the inter-

face for the runtime engine, this lets

you get a pointer to the active movie

(the one currently executing). From

the active movie you can work your

way to the score, or to the casts, and

so on. This is a Director-only interface.

• IMoaMmUtils2: This has some color

support, but mostly it has functions to

print messages to the message win-

dow – great for debugging.

• IMoaMmValue: This is an invaluable

(no pun intended) interface – it lets

you do conversions from the generic

value format to most anything else

(strings, integers, symbols, lists, and so

on). Lingo is a loosely typed language,

which means that a variable can be

freely assigned to anything, it’s not

restricted to a certain type of data (as

opposed to C/C++, where integers can

only be assigned to variables declared

to be integer variables; that would be

an example of a more strongly typed

language). To pull off the loose typing

of Lingo, a variable really has two inter-

nal components: a struct consisting of

the “type”component, a flag indicating

what type of data it contains; and a

“data” component, which would be a

pointer to the data. All variables are

assigned to these value structs; to

assign a different kind of data, MOA

just changes the type indicator and

sets a pointer to the new data. That’s

MOA, though – you won’t fiddle with a

variable’s innards yourself directly.

What it all comes down to, though, is

that all data passed in or out of the

Xtra, to or from Lingo, is in the form of

values, and you must use the

IMoaMmValue interface to make the

conversions.

• IMoaMmList: Gives you the power to

manipulate lists in Lingo. You can parse

ones sent in, create ones to send back,

and so on.

There are many others to work with,

though, since there are well over 100

class interfaces. There are classes for

manipulating files, memory, and streams,

getting app info; creating dialogs; and

more. Some are for obscure uses, some

you may never use, some you may use a

lot. It all depends on what your project

entails.

The interfaces are documented in the

DOCS section of the XDK. This is a good

time to quickly review the files in the

docs, since you’ll be referencing them a

lot from this point forward. The DOCS

section is organized into folders, such as

MOADG, MOREF, MMDG, MMREF, DRDG,

DRREF, AWDG, and AWREF. Clearly there is

a pattern here.

The first two or three letters refer to

the category. MOA and MO mean MOA

itself, MM is the multimedia functions, DR

refers to classes specific to Director, and

AW refers to classes specific to

Authorware. The last two or three refer to

the type of documentation – DG means

“design guide” (more of a how-to discus-

sion), and REF means “reference” (where

you would go to look things up). So to

look up a Director-specific interface, such

as getting a pointer to the score, you

would look in DRREF. Once in there,

though, you will find over 30 files, so you

will have to root around, but each folder

has an index.htm file that you can start

with and work your way from there.

So, how do you “get” an interface any-

way? You do so by calling QueryInterface

and telling it what interface you want,

and where you want the pointer for it to

be kept. As mentioned, I liked to get the

common interfaces at Create time and

“you’ve made it to
moa (macromedia open
architecture) city”

4 • 2004 MXDJ.COM • 71

keep them around, so most of my

QueryInterface calls are made in

MoaCreate_CScript, which is invoked

when the Xtra is instantiated. First,

though, it is necessary to declare vari-

ables for the pointers. The variables

should go in the class instance variables

section in CSCRIPT.H, as in:

EXTERN_BEGIN_DEFINE_CLASS_INSTANCE_VARS

(CScript)

PIMoaMmValue pMmValue;

PIMoaMmUtils2 pMmUtils;

PIMoaMmList pMmList;

PIMoaDrPlayer pDrPlayer;

/* your other variables are defined

here */

EXTERN_END_DEFINE_CLASS_INSTANCE_VARS

Now, any time your Xtra is called the

functions will have access to these vari-

ables (they’ll stay static). However, we

need to set them up when the Xtra is

instantiated and, as mentioned, we’ll do

that in MoaCreate_CScript like so:

err = This->pCallback->QueryInterface(

&IID_IMoaMmValue,

(PPMoaVoid)&This->pMmValue);

err = This->pCallback->QueryInterface(

&IID_IMoaMmUtils2,

(PPMoaVoid)&This->pMmUtils);

err = This->pCallback->QueryInterface(

&IID_IMoaMmList,

(PPMoaVoid)&This->pMmList);

err = This->pCallback->QueryInterface(

&IID_IMoaDrPlayer,

(PPMoaVoid)&This->pDrPlayer);

I have never had the common inter-

faces (Value, Utils, etc.) fail, as they are

common to most of MOA. If you want to

be a good citizen you could check the

return code in case there is an attempt to

call your Xtra from some Macromedia

product other than that for which it was

intended. More likely you might run into

problems with Director-specific inter-

faces, like DrPlayer, which would not be

available in, say, Authorware. If you were

trying to make a cross-product Xtra,

you’d have to test (via IID_IMoaAppInfo)

to see what product you were running in

and get the corresponding interface (or

refuse to run).

Now you should have those interfaces

for the life of your Xtra’s instance. The

other key thing we need to do now is to

remember to release them upon our

destroy, which would be done as shown

in Code I.

Using the Interfaces
Now that you’ve got some interfaces,

let’s put them to use! In the last article we

discussed the message table, which is

where you define scripting commands

and the parameters you can allow to be

passed in, and we managed to make a

call into the Xtra itself. But we didn’t have

a chance to look at how to access those

parameters, or how to pass a return value

back out.

The example function we had with

parameters was:

"* FixCertainBug integer bugNum,

string fixName\n"

As a quick refresher, the asterisk in

front means that it’s a global command

(you don’t have to explicitly instantiate

the Xtra) and requires two parameters –

an integer and a string. The given names

bugNum and fixName are for user read-

ability only; they have no impact on any-

thing and are, in fact, optional.

The base function we used last time

for FixCertainBug looked like this:

MoaError

CScript_IMoaMmXScript::XScrpFixAllBugs

(PMoaDrCallInfo callPtr)

{

UNUSED(callPtr);

MoaError err = kMoaErr_NoErr;

MessageBox(NULL, "Hello, World", "",

MB_OK);

return(err);

}

We'll now strip it down a bit to:

MoaError

CScript_IMoaMmXScript::XScrpFixAllBugs

(PMoaDrCallInfo callPtr)

{

MoaError err = kMoaErr_NoErr;

return(err);

} /* fix all bugs */

I mainly just took out the

UNUSED(callPtr) line and the MessageBox

call. UNUSED() is just a macro to keep the

compiler from complaining because

callPtr is passed in but is not necessarily

used in all functions.

You might immediately think that one

part is obvious – returning values back to

Lingo, where at the end of the function

there’s a line:

return(err)

But, in fact, it’s deceptive. That’s not

how you return a value to Lingo. What

you are returning there is a result code

that indicates to the Director runtime

engine whether or not you were success-

ful in processing the call. Err is set to

kMoaErr_NoErr by default. You would

only send back something different if you

wanted Director to throw an error show-

ing that you could not process the com-

mand.

One example of where you might

want to send something other than

kMoaErr_NoErr back might be if you

failed to, for example, allocate memory.

You could choose to handle this yourself,

or you might wish to have Director throw

an error. If so, you could send back

kMoaErr_OutOfMem. Or, possibly the

user passed in a parameter that you don’t

allow; you could send back

kMoaErr_BadParam and let Director do

the complaining.

The error codes are defined in three

files: MOATYPES.H, MMTYPES.H, and

DRTYPES.H. These are not only codes that

you can send back, but also codes that

you might receive as a result of some

failed call to a function that you make

internally to MOA. DRIXLNGO.H says you

can just send back _ArgOutOfRange,

_OutOfMem, _InternalError, and

_ValueTypeMismatch, but I’ve had suc-

cess sending back other values.

You send back a result code to Lingo

itself via the callPtr, which is a parameter

that is a pointer to a structure that has all

the pertinent information about Lingo’s

call to your Xtra – specifically

methodSelector, resultValue, nargs, and

pArgs.

• methodSelector: The index into your

method table so you know what func-

tion of yours was called. We coupled

this with an enum to get as far as

72 • MXDJ.COM 4 • 2004

invoking the right function in your

Xtra, so we’ve done that part already.

• resultValue: What is returned to Lingo.

This is what you would stuff with the

value of whatever you want to send

back – a string, a symbol, an integer, a

list, and so on.

• nargs: A count of the parameters

passed in. If you set your message

table to have a fixed number of argu-

ments, you won’t need this, but if the

argument amount is variable (by using

an asterisk as the last parameter on

the parameter line), then you need to

test to see how many were actually

passed in.

• pArgs: A pointer to the args, but you

don’t really use it directly. Instead,

there’s a macro we use to get at them

called AccessArgByIndex.

The args passed in may or may not be

preceded by an initial arg for the object.

This would depend on whether or not

the command is a global command. A

child command, as discussed last month,

where the Xtra would need to be instanti-

ated, always passes in the object instance

as the first parameter, often in the form

of:

createFile object me, string fileName

This allows you to call it from Lingo

after having instantiated it, as in:

CreateFile(fileObj, "C:\TEST.TXT")

What this means to you on the Xtra

side is that you have to account for that

object when you access your args. Failure

to do so will mean that you get an object

instead of an integer or string or whatev-

er you expected.

I like to set up a define called

ARG_BASE and set it to 0 or 1 depending

on whether or not the commands are

global (typically I have them all one or all

the other; I usually don’t mix globals and

children in the same Xtra, although

there’s no technical reason why not).

Then I can just reference the parameters

in the order I’m expecting them, without

worrying about remembering to account

for any preceding object parameter. If I

choose to convert all of them from global

to child (or child to global), I only need to

change the message table and the

define, and not all the code I have inter-

nally.

I might define:

#define ARG_BASE 1

(as you would for an Xtra that had child

commands) and then could just refer-

ence each arg that I was expecting as

ARG_BASE + 1 for the first arg, ARG_BASE

+ 2 for my second arg, etc. Try it; you’ll

see that it helps.

At any rate, we need to look at how to

access args, which are all in MoaMmValue

form. As I mentioned earlier, the

IMoaMmValue interface provides func-

tions for converting to and from values.

Normally it is your responsibility to

release any values you create (because

they do allocate memory). If you were to

create a value for a symbol for the pur-

poses of supplying it to some function, it

would normally be your responsibility to

release that value when you were done.

The one notable exception to this has to

do with parameter passing through the

callPtr, which is what we’re discussing

here. You do not release the values

passed in to you, nor do you release the

value that you send back via resultValue.

If you do release them, Director will die a

most horrible death upon returning from

a supposedly successful call to your Xtra,

and you would otherwise have quite a

time figuring out why.

The AccessArgByIndex macro lets you

get your fingers on the parameters. The

FixCertainBug example function takes

two parameters, an integer bugNum and

a string fixName. We could process the

call as shown in Code II.

A couple of points here: pObj->

pMmValue is the pointer to the

IMoaMmValue interface that you got dur-

ing create time. An interesting distinction

between create/destroy time and “the

rest of the time” is that in create/destroy,

when you reference your class instance

variables you do so as This->pMmValue

but in the rest of the program you use

pObj->pMmValue. This is a lot more

straightforward than it used to be,

believe me. I mention it because the

compiler will not allow pObj-> to be used

from create/destroy, and it won’t allow

This-> to be used anywhere else. FYI.

Also, I added ARG_BASE + to when I

was referencing the arg number, which is

strictly unnecessary because ARG_BASE is

0, but it’s a good habit and saves trouble

later, as we have already discussed.

Finally, you will notice that I didn’t

release the value at any time. When we

do the AccessArgByIndex we are not cre-

ating a value, we are simply accessing

one that is already created and assigning

it to our internal variable, hence no need

to release it. Likewise on the resultValue,

Director will release that as well. As I said,

this is basically the only time this is the

case. Normally you will always be respon-

sible for releasing the values you create

unless otherwise pointed out in the doc-

umentation for an interface.

So, we have now accessed our

passed-in parameters and also returned

values back! The user on the other end

would receive back an integer, 1 (TRUE).

Since we were also passed in a name

for a fix, we can practice printing the

information out to the message window.

The interface IMoaMmUtils2 has func-

tions PrintMessage, PrintMessage1,

PrintMessage2, PrintMessage3, and

PrintMessage4, all of which print mes-

sages to the message window. The differ-

ence between them is how many option-

al parameters they take – PrintMessage

by itself parses no extra parameters.

Parameters are given in C format, as you

might do with sprintf:

pObj->pMmUtils->PrintMessage2("Now

fixing bug %d, name: %s\n",

whichBug,

(MoaLong)&fixInfo[0])

It’s not a 100% carbon copy of sprintf

form; for instance, you can’t pass a string

in directly but you have to give the pointer

to it like I did here – but it’s close enough.

As you have undoubtedly noticed,

there are variable types like MoaLong,

MoaChar, and so forth. These are generally

mapped 1: 1 to regular longs, ints, and

chars. You can, in fact, use them inter-

changeably, but they do provide a layer of

abstraction. I usually try to use the MOA

form when I’m paying attention. At this

point in the XDK life cycle there are no con-

version functions, and I freely use MoaLong

to pass to C functions or whatever, but that

may change at some point in the future.

Summary
I will close with a couple of quick notes

c
o

d
e

 I
c

o
d

e
 I

I

4 • 2004 MXDJ.COM • 73

on IMoaMmValue and a comment on

the naming of interfaces within MOA

itself. First, everything we’ve said so

far is predicated on knowing ahead of

time what type of data (e.g., integer) a

value is. What if you don’t know what

kind of data it holds? IMoaMmValue

has a function called ValueType()

which, if passed a value, will return

kMoaMmValueType_xxxx where xxxx

would be Void, Integer, Symbol,

Member, and more (the complete list

is in mmtypes.h). As a shortcut,

though, if you allow a parameter to

be either an integer or a string, rather

than test for the valueType, you can

try to convert it to integer and then

check the error code. If it fails, try to

convert it to string, and so on.

You may note that I referred to

IMoaMmUtils2; what happened to

IMoaMmUtils1? Over time, the XDK

has evolved, and the class interfaces

are generally backward compatible

when they are expanded.

Occasionally, though, they are not,

and when that has happened

Macromedia has left the original

class alone so as to not break any

existing Xtras. Instead, they created

a new variant that supersedes the

old one, usually appending a 2 to

the end (there are no 3s yet to my

knowledge). So the original

IMoaMmUtils is obsolete and you

should use IMoaMmUtils2 instead.

IMoaFile2 and IMoaStr2 are other

examples of this. If I remember cor-

rectly, all the value conversions were

originally in IMoaMmUtils but were

later migrated out into

IMoaMmValue, hence the reworking

of IMoaMmUtils.

You should now be in a position

to start experimenting with passing

information in and out of an Xtra,

and maybe even acting on that

information. Next time we’ll delve a

little further into MOA and learn a

little bit more. Enjoy!

if (This->pMmValue)

{

This->pMmValue->Release();

This->pMmValue =NULL;

}

if (This->pMmUtils)

{

This->pMmUtils->Release();

This->pMmUtils =NULL;

}

if (This->pMmList)

{

This->pMmList->Release();

This->pMmList =NULL;

}

if (This->pDrPlayer)

{

This->pDrPlayer->Release();

This->pDrPlayer =NULL;

}

#define ARG_BASE 0

MoaError CScript_IMoaMmXScript::XScrpFixAllBugs(PMoaDrCallInfo

callPtr)

{

MoaError err = kMoaErr_NoErr;

MoaMmValue value;

MoaLong whichBug;

MoaChar fixInfo[256] ={0};

// Get at the integer for the bug num

AccessArgByIndex(ARG_BASE + 1, &value);

pObj->pMmValue->ValueToInteger(&value, &whichBug);

// And the string for the name

AccessArgByIndex(ARG_BASE + 2, &value);

pObj->pMmValue->ValueToString(&value, &fixInfo[0],

sizeof(fixInfo));

// Now fix accordingly (this part you write :)

// And return success

pObj->pMmValue->IntegerToValue(TRUE, callPtr->resultValue);

return(err);

} /* fix all bugs */

Tab Julius is has been writ-

ing software since the mid-

70's, and now works for a

software firm developing

medical imaging applica-

tions, although he still does

limited consulting on the

side. tab@penworks.com

74 • MXDJ.COM 4 • 2004

va
n

g
u

a
rd

echnical illustrator Ron Rockwell uses Macromedia FreeHand to create ren-

derings, instruction manuals, catalogs, brochures, print ads, and Web graph-

ics such as these. He is a Team Macromedia member for FreeHand as well as

MXDJ's FreeHand editor, and is currently working on an instruction course for

FreeHand MX. You can see more of his work at www.nidus-corp.com.

Line Art

t

